ИЗБОРНОМ ВЕЋУ

ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА

УНИВЕРЗИТЕТА У БЕОГРАДУ

На основу члана 78. Закона о науци и истраживањима ("Службени гласник Републике Србије", бр. 49/19), Правилника о стицању истраживачких и научних звања ("Службени гласник Републике Србије", бр. 80/2024, 70/2025) Министарства науке, технолошког развоја и иновација и одлуке Изборног већа Пољопривредног факултета Универзитета у Београду бр. 400/10-5 од 25.09.2025. године, покренут је поступак за избор др Јоване Марковић у звање научни сарадник за научну област: Биотехничке науке, грана: Прехрамбено инжењерство, научна дисциплина: Технологија биљних производа, ужа научна дисциплина: Методе конзервисања. На истој седници именована је Комисија за спровођење поступка стицања научног звања, подношење извештаја и оцене научног рада кандидаткиње у саставу:

- 1. др Драгана Михајловић, редовни професор Пољопривредног факултета Универзитета у Београду, председник;
- 2. др Виктор Недовић, редовни професор Пољопривредног факултета Универзитета у Београду, члан;
- 3. др Верица Ђорђевић, доцент Технолошко-металуршког факултета Универзитета у Београду, члан.

У складу са Правилником о стицању истраживачких и научних звања ("Службени гласник Републике Србије", бр. 80/2024, 70/2025), а на основу увида у документацију, оцене досадашње делатности и научног рада, Комисија подноси следећи:

ИЗВЕШТАЈ

1. ПОДАЦИ О КАНДИДАТКИЊИ

Име и презиме: Јована Марковић

Година рођења: 19.04.1994. Радни статус: запослена

Назив институције у којој је запослена: Универзитет у Београду-Пољопривредни факултет

Претходна запослења: /

Образовање

Основне академске студије: од 2013. до 2017. године, Универзитет у Београду-Пољопривредни факултет, студијски програм: Прехрамбена технологија, модул: Технологија конзервисања и врења

Одбрањен мастер рад: 2018. године, Универзитет у Београду- Пољопривредни факултет, студијски програм: Прехрамбена технологија, модул: Прехрамбени инжењеринг

Одбрањена докторска дисертација: 2025. године, Универзитет у Београду- Пољопривредни факултет, студијски програм: Прехрамбена технологија

Постојеће научно звање: истраживач-сарадник Научно звање које се тражи: научни сарадник

Датуми избора у стечена научна звања (укључујући и постојеће)

истраживач-сарадник: 30.01.2025. године

научни сарадник: /

виши научни сарадник: /

Област науке у којој се тражи звање: Биотехничке науке

Грана науке у којој се тражи звање: Прехрамбено инжењерство

Научна дисциплина у којој се тражи звање: Технологија биљних производа

Назив матичног научног одбора којем се захтев упућује: МНО за биотехнологију и

пољопривреду

Стручна биографија

Др Јована Марковић рођена је 19.04.1994. године у Аранђеловцу, Република Србија. Основну школу завршила је у Тополи, а средње образовање (Гимназија, природноматематички смер) стекла је у Аранђеловцу. Пољопривредни факултет Универзитета у Београду, студијски програм: Прехрамбена технологија, модул Технологија конзервисања и врења, уписала је школске 2013/14. године. Основне академске студије завршила је 2017. године, са општим успехом 9,85 и оценом 10 на завршном раду, под називом: "Примена и значај антиоксиданата у индустријској производњи готове хране". Школске 2017/18. године уписала је мастер академске студије на истом факултету, студијски програм: Прехрамбена технологија, модул Прехрамбени инжењеринг. Све испите предвиђене планом и програмом мастер академских студија положила је са просечном оценом 10,00. Мастер рад, под називом "Стабилност каротеноида при сувој и влажној топлотној обради бундеве", одбранила је 2018. године, са оценом 10.

Током основних и мастер академских студија, била је стипендиста Министарства просвете, науке и технолошког развоја и Фонда за младе таленте (стипендија "Доситеја") Министарства омладине и спорта Републике Србије. Школске 2016/17. године награђена је за изузетан успех током студија на Пољопривредном факултету Универзитета у Београду. Била је добитница награде за најбољег дипломираног студента Пољопривредног факултета 2017. године, коју додељује Задужбина "Никола Спасић".

Докторске академске студије на Пољопривредном факултету Универзитета у Београду, студијски програм: Прехрамбена технологија, уписала је школске 2018/19. године. Испите предвиђене планом и програмом докторских академских студија положила је са просечном оценом 9,86. Докторске студије завршила је 03.06.2025. године, одбраном докторске дисертације под насловом: "Утицај инкапсулираног сока и лиофилизованог тропа корена и листа рена (*Armoracia rusticana* L.) на оксидативну стабилност и квалитет мајонеза током складиштења".

Кандидаткиња је ангажована на Катедри за технологију конзервисања и врења, Пољопривредног факултета Универзитета у Београду, на предметима: Технологија готове хране и Функционална својства хране, на којима изводи лабораторијске вежбе од школске 2018/19. године до данас. Била је ангажована као стипендиста Министарства просвете, науке и технолошког развоја Републике Србије на пројекту: "Развој и примена нових и традиционалних технологија у производњи конкурентних прехрамбених производа са додатом вредношћу за домаће и европско тржиште - СТВОРИМО БОГАТСТВО ИЗ БОГАТСТВА СРБИЈЕ" (евиденциони број пројекта ИИИ 46001) на Пољопривредном факултету Универзитета у Београду 2019. године. Од 2020. године ангажована је на истраживањима у оквиру Уговора о реализацији и финансирању научноистраживачког рада између Пољопривредног факултета Универзитета у Београду и Министарства науке, технолошког развоја и иновација Републике Србије (евиденциони број уговора за 2025. годину: 451-03-137/2025-03/200116). Учесница је стратешког пројекта билатералне научне сарадње између Републике Србије и Народне Републике Кине за период 2024-2026. године. На Пољопривредном факултету Универзитета у Београду, изабрана је у звање истраживачприправник 2022. године, а потом у звање истраживач-сарадник 2025. године у области: Биотехничке науке, грана: Прехрамбено инжењерство, научна дисциплина: Технологија биљних производа, ужа научна дисциплина: Методе конзервисања.

2. ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ

Кандидаткиња др Јована Марковић започела је свој научноистраживачки рад на Пољопривредном факултету Универзитета у Београду 2019. године кроз ангажовања финансирана од стране Министарства просвете, науке и технолошког развоја у оквиру пројекта "Развој и примена нових и традиционалних технологија у производњи конкурентних прехрамбених производа са додатом вредношћу за домаће и европско тржиште - СТВОРИМО БОГАТСТВО ИЗ БОГАТСТВА СРБИЈЕ" (евиденциони број

пројекта ИИИ 46001). Била је ангажована прво као стипендиста Министарства, а потом и као запослена у звањима истраживач-приправник и истраживач-сарадник. Докторску дисертацију је одбранила 03.06.2025. године, а током њене израде демонстрирала је систематичан приступ и висок степен самосталности, иницијативности и одговорности. У свом досадашњем раду кандидаткиња је објавила 28 публикација, од којих 4 рада у међународним часописима (један у категорији М21а+, два у категорији М21 и један у категорији М22), 2 рада у водећим националним часописима (категорија М24), 20 саопштења на међународним научним скуповима (категорија М34), 1 саопштење на националном научном скупу (категорија M64). Према Scopus бази података радови кандидаткиње цитирани су 30 пута у виду хетероцитата. Научни допринос кандидаткиње остварен је кроз учешће у истраживањима у оквиру националних и међународних пројеката. Активно учествује на међународним и домаћим научним скуповима. Рад кандидаткиње препознат је на националном и међународном нивоу кроз успостављање и одржавање сарадње са истраживачима из националних и међународних истраживачких институција. Током своје научноистраживачке активности, кандидаткиња је показала широк спектар интересовања, али и велики труд, залагање, иницијативу, одговорност и способност прилагођавања тимском раду, као и изузетну заинтересованост за усавршавањем.

Научноистраживачки рад кандидаткиње др Јоване Марковић претежно се базира на истраживањима у области прехрамбене технологије и биохемије, са посебним фокусом на технологији биљних производа. Основни истраживачки правци кандидаткиње усмерени су на: 1) различите начине екстракције и карактеризације активних компонената из природних извора, 2) инкапсулацију биоактивних компонената различитим техникама инкапсулације у различите матриксе и физичко-хемијску карактеризацију произведених инкапсулата и 3) примену антиоксиданаса из природних извора за спречавање оксидације прехрамбених производа богатих уљима. Највећи део научноистраживачке активности кандидаткиње односи се на истраживања из области везаних за процену биоактивног потенцијала биљних сировина (поврће, воће, лековито и ароматично биље, микробиље, нуспроизводи прераде хране) и различитих нетермалних и еколошки прихватљивих техника за екстракцију биоактивних компонената из поменутих природних извора. Осим тога, истраживања кандидаткиње обухватала су и испитивање утицаја различитих начина прераде на задржавање нутритивних, биоактивних и сензорних својстава компонената из природних извора (поврћа и воћа). Значајан део истраживања фокусиран је на примену поступака инкапсулације различитим техникама и унутар различитих комбинација носача у циљу очувања биоактивног потенцијала биљних сировина и постизања погодније форме за њихово додавање у прехрамбене производе. Тиме су постигнути значајни бенефити у погледу физичко-хемијских, морфолошких и биоактивних карактеристика инкапсулираних компонената, као и њихове стабилности током дугорочног складиштења. Посебан сегмент научноистраживачке активности кандидаткиње односи се на производњу готовог прехрамбеног производа богатог уљима са додатком биоактивних компонената из биљног извора, у циљу спречавања оксидације, очувања квалитета и продужења рока трајања. То је

био и предмет истраживања у оквиру докторске дисертације кандидаткиње. Тиме су постигнуте бројне предности, као што су: одлагање формирања примарних и секундарних производа оксидације, побољшање квалитета и продужење рока трајања производа и смањена употреба синтетичких антиоксиданаса у прехрамбеној индустрији. Осим тога, ова група истраживања пружила је веома интересантан приступ валоризацији тропова и потпуном искоришћењу биљне сировине, који се уклапа у концепт "зелене хемије" и еколошке одрживости.

3. ПРИКАЗ НАЈЗНАЧАЈНИЈЕГ РЕЗУЛТАТА

1. <u>Marković, J.</u>, Salević-Jelić, A., Milinčić, D., Gašić, U., Pavlović, V., Rabrenović, B., Pešić, M., Lević, S., Mihajlović, D., Nedović, V. (2025). Horseradish (*Armoracia rusticana* L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. *Food Chemistry*, 464(2025), 141777. https://doi.org/10.1016/j.foodchem.2024.141777 (M21a+)

Рад о карактеризацији и примени инкапсулираног сока листа рена (*Armoracia rusticana* L.) као потенцијалног антиоксиданса у производњи мајонеза, објављен у часопису *Food Chemistry* (M21a+) 2025. године, представља најзначајније научно остварење кандидаткиње. Допринос др Јоване Марковић у овом научном резултату био је у свим фазама истраживања. Кандидаткиња је конципирала истраживање, одабрала методологију истраживања, одредила параметре за праћење и прикупљање података, одабрала статистичку методу и алат за обраду података. Спровела је систематично тумачење резултата, извршила њихову визуализацију и писала рад, чиме је доминантно допринела стварању овог научног резултата.

У овој публикацији је изведена физичко-хемијска, морфолошка, термална, антимикробна, структурна, спектрофотометријска и хроматографска карактеризација инкапсулата хладно пресованог сока листа рена добијених техником спреј сушења, као и процена њиховог утицаја на квалитет, оксидативну стабилност и сензорна својства мајонеза током складиштења. Произведени инкапсулати испољили су обећавајућа физичко-хемијска својства и висок антиоксидативни потенцијал и стога су тестирани као антиоксидативни састојци мајонеза. Производња мајонеза са инкапсулатима рена изведена је у Лабораторији за развој и иновације прехрамбене компаније Полимарк д.о.о. (Београд, Србија). Додати инкапсулати позитивно су утицали на оксидативну стабилност, квалитет и рок трајања мајонеза. Ови ефекти су били снажнији у поређењу са синтетичким антиоксидансом који се конвенционално користи за производњу мајонеза у овој компанији. Обучени потрошачи, панелисти из компаније, као и необучени из академске заједнице, оценили су мајонезе са инкапсулатима сензорно прихватљивим.

Студија је истакла велики потенцијал развијених инкапсулата сока листа рена добијених техником спреј сушења за употребу у сектору прехрамбене индустрије као нових антиоксидативних састојака за очување квалитета, продужење рока трајања и замену синтетичких антиоксиданаса који се користе у производњи мајонеза. Додатно, ово

истраживање је веома значајно са аспекта еколошке одрживости, јер промовише валоризацију листа рена, као недовољно истраженог и потцењеног извора биоактивних једињења са здравствено корисним деловањем, који се обично одлаже са остатком надземне биомасе.

4. ПОКАЗАТЕЉИ УСПЕХА У НАУЧНОИСТРАЖИВАЧКОМ РАДУ

Према елементима за квалитативну оцену научног доприноса кандидаткиње (Прилог 3 Правилника о стицању истраживачких и научних звања), Комисија је констатовала да је др Јована Марковић у досадашњем научноистраживачком раду остварила допринос у следећим сегментима:

4.1. Утицајност

Утицајност научних резултата се исказује кроз цитираност и Хиршов индекс по базама Scopus или Web of Science. Преглед цитата по публикованим радовима, а према поменутим научним цитатним базама, дата је у Табели 1 (Прилог 2). Кандидаткиња др Јована Марковић је према научној цитатној бази Scopus остварила цитираност радова 31 и Хиршов индекс 4, а према бази Web of Science цитираност радова 16 и Хиршов индекс 3. Увид у базе извршен је на дан 26.09.2025. године.

Табела 1. Цитираност научних радова др Јоване Марковић

	Sco	pus	Web of	Science
Научни радови категорије М20	Хетеро- цитати	Укупно	Хетеро- цитати	Укупно
Marković, J., Salević-Jelić, A., Milinčić, D., Gašić,				
U., Pavlović, V., Rabrenović, B., Pešić, M., Lević,				
S., Mihajlović, D., Nedović, V. (2025). Horseradish				
(Armoracia rusticana L.) leaf juice encapsulated				
within polysaccharides-blend-based carriers:	1	1	1	1
Characterization and application as potential				
antioxidants in mayonnaise production. Food				
Chemistry, 464(2025), 141777.				
https://doi.org/10.1016/j.foodchem.2024.141777				
Marković, J. M., Salević-Jelić, A. S., Milinčić, D.				
D., Gašić, U. M., Pavlović, V. B., Rabrenović, B. B.,				
Pešić, M. B., Lević, S. M., Nedović, V. A.,				
Mihajlović, D. M. (2024). Encapsulated horseradish	4	4	4	4
(Armoracia rusticana L.) root juice:	4	4	4	4
Physicochemical characterization and the effects of				
its addition on the oxidative stability and quality of				
mayonnaise. Journal of Food Engineering,				

<i>381</i> (2024), 112189.				
https://doi.org/10.1016/j.jfoodeng.2024.112189				
Belošević, S. D., Milinčić, D. D., Gašić, U. M.,				
Kostić, A. Ž., Salević-Jelić, A. S., Marković, J. M.,				
Đorđević, V. B., Lević, S. M., Pešić, M. B., Nedović,				
V. A. (2024). Broccoli, amaranth, and red beet	0	0	_	_
microgreen juices: The influence of cold-pressing on	9	9	7	7
the phytochemical composition and the antioxidant				
and sensory properties. Foods, 13,				
757. https://doi.org/10.3390/foods13050757				
Mihajlović, D., Čolić, S., Marković, J., Perišić, D.,				
Rajić, J., Premović, T., Rabrenović, B. (2023). Heat				
treatment effect on tocopherols, total phenolics and	6	6 4		
fatty acids in table olives (Olea europaea L.).			4	
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,				
51(1). https://doi.org/10.15835/nbha51113029				
Paunović, D.M., Marković, J.M., Stričević, L.P.,				
Vujasinović, V.B., Rabrenović, B.B. (2021). The				
influence of cutting thickness, shape and moisture	1	1		
content on oil absorption during potato frying.	1	1	0	0
Journal of Agricultural Sciences, 66(1), 67-74.				
https://doi.org/10.2298/JAS2101067P				
Paunović, D.M., Demin, M.A., Petrović, T.S.,				
Marković, J.M., Vujasinović, V.B., Rabrenović,				
B.B. (2020). Quality parameters of sunflower oil and	9	10	0	0
palm olein during multiple frying. Journal of	9	10	U	U
Agricultural Sciences, 65(1), 61-68.				
https://doi.org/10.2298/JAS2001061P				
УКУПНО	30	31	16	16

4.2. Учешће на пројектима

Као стипендиста Министарства просвете, науке и технолошког развоја Републике Србије, кандидаткиња је била ангажована на пројекту: "Развој и примена нових и традиционалних технологија у производњи конкурентних прехрамбених производа са додатом вредношћу за домаће и европско тржиште - СТВОРИМО БОГАТСТВО ИЗ БОГАТСТВА СРБИЈЕ" (евиденциони број пројекта ИИИ 46001) на Пољопривредном факултету Универзитета у Београду 2019. године. Од 2020. године ангажована је на истраживањима у оквиру Уговора о реализацији и финансирању научноистраживачког рада између Пољопривредног факултета Универзитета у Београду и Министарства науке, технолошког развоја и иновација Републике Србије (евиденциони број уговора за 2025. годину: 451-03-137/2025-03/200116). Учесница је стратешког пројекта билатералне научне

сарадње између Републике Србије и Народне Републике Кине за период 2024-2026. године (Прилог 3).

4.3. Допринос у унапређењу научног и образовног рада

Допринос кандидаткиње др Јоване Марковић реализацији коауторских радова огледа се у њеном активном учешћу у свим фазама. Кандидаткиња је у досадашњем научноистраживачком раду, показала висок степен самосталности. Самосталност се огледа у постављању научних хипотеза, осмишљавању и реализацији експерименталног рада, анализи и статистичкој обради добијених резултата и писању научних радова, као и публиковању и интерпретацији резултата истраживања на међународним и националним скуповима у Србији и региону. Осим тога, своје способности и прилагођеност тимском раду др Јована Марковић је потврдила кроз сарадњу са другим истраживачима у научноистраживачким институцијама, извршавајући индивидуална задужења и тиме суштински доприносећи квалитету радова. Кандидаткиња је самостално или у сарадњи са другим ауторима објавила више публикација, међу којима је била први аутор на 10 публикација (1 из категорије М21а+, 1 из категорије М21 и 8 из категорије М34). Истраживања кандидаткиње претежно су усмерена на екстракцију и анализу активних компонената из природних извора, затим инкапсулацију биоактивних компонената различитим техникама инкапсулације у различите матриксе и примену антиоксиданаса из природних извора за спречавање оксидације прехрамбених производа. Резултати ових истраживања доприносе одрживом развоју и светским трендовима у погледу унапређења технолошких поступака, пружајући вишеструку еколошку и економску корист тиме што: промовишу валоризацију отпада у пољопривреди, замену синтетичких антиоксиданаса природним биљним антиоксидансима и смањење количина отпада изазваног кварењем хране. Овај научни допринос од посебне је важности за прехрамбену технологију и индустрију, јер пружа научно утемељене податке који могу послужити као основа за даља истраживања и иновације у овој области. Објављени научни радови су проистекли из истраживања у оквиру докторске дисертације, као и из сарадње са колегама са Пољопривредног и Технолошкометалуршког факултета Универзитета у Београду, као и из компаније Полимарк д.о.о, Београд. Публиковани радови кандидаткиње веома су актуелни и значајни, како за науку, тако и за индустријску примену.

Својим идејама и иницијативом кандидаткиња активно учествује у осмишљавању и реализацији дипломских и мастер радова, што указује на посвећеност образовању научних кадрова.

На основу увида у остварене научноистраживачке резултате кандидаткиње, као и њеног доприноса као аутора и коаутора у публикацијама, закључује се да др Јована Марковић успешно примењује савремене и иновативне приступе у научноистраживачком раду. На основу приказаних биографских и библиографских података, закључује се да је у питању кандидаткиња са дугогодишњим експерименталним искуством, превасходно у области

прехрамбене технологије и биохемије. Кандидаткиња је у раду показала висок степен познавања и решавања научних и практичних технолошких проблема, као и изузетну самосталност и оргиналност у опажању и сагледавању актуелне научне проблематике. У реализацији радова кандидаткиња је дала пун и суштински допринос, који се огледа у стварању идеја, постављању научних хипотеза, осмишљавању, планирању и самом извођењу експерименаталног дела истраживања, као и статистичкој обради и уобличавању добијених резултата у форму рада и саопштења.

4.4. Наставна активност

Осим научног доприноса, у оквиру свог ангажовања на Пољопривредном факултету Универзитета у Београду кандидаткиња је ангажована на Катедри за технологију конзервисања и врења, на предметима: *Технологија готове хране* и *Функционална својства хране*, на којима учествује у организацији и одржавању практичних, лабораторијских вежби од школске 2018/19. године до данас.

5. БИБЛИОГРАФИЈА КАНДИДАТКИЊЕ

Библиографски подаци класификовани су сагласно са одредбама Правилника о стицању истраживачких и научних звања ("Службени гласник Републике Србије", бр. 80/2024, 70/2025) и прилогом 2 овог Правилника (Врста и квантификација индивидуалних научноистраживачких резултата) у Табели 1 (Прилог 1).

Табела 1. Објављени и саопштени радови др Јоване Марковић

Р. бр.	Назив групе резултата		Врста	Вредност резултата
	Радови објављени у научним часописима међународног значаја	м20 резултата		
1.	Marković, J., Salević-Jelić, A., Milinčić, D., Gašić, U., Pavlović, V., Rabrenović, B., Pešić, M., Lević, S., Mihajlović, D., Nedović, V. (2025). Horseradish (<i>Armoracia rusticana</i> L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production. <i>Food Chemistry</i> , 464(2025), 141777. https://doi.org/10.1016/j.foodchem.2024.141777		M21a+	20
2.	Marković, J. M., Salević-Jelić, A. S., Milinčić, D. D., Gašić, U. M., Pavlović, V. B., Rabrenović, B. B., Pešić, M. B., Lević, S. M., Nedović, V. A., Mihajlović, D. M. (2024). Encapsulated		M21	5*

	horseradish (<i>Armoracia rusticana</i> L.) root juice: Physicochemical characterization and the effects of its addition on the oxidative stability and quality of mayonnaise. <i>Journal of Food Engineering</i> , 381(2024), 112189.			
	https://doi.org/10.1016/j.jfoodeng.2024.112189			
3.	Belošević, S. D., Milinčić, D. D., Gašić, U. M.,			
	Kostić, A. Ž., Salević-Jelić, A. S., Marković, J. M.,			
	Đorđević, V. B., Lević, S. M., Pešić, M. B.,			
	Nedović, V. A. (2024). Broccoli, amaranth, and red		M21	5*
	beet microgreen juices: The influence of cold-			
	pressing on the phytochemical composition and the			
	antioxidant and sensory properties. Foods, 13,			
	757. https://doi.org/10.3390/foods13050757			
4.	Mihajlović, D., Čolić, S., Marković, J., Perišić, D.,			
	Rajić, J., Premović, T., Rabrenović, B. (2023). Heat			
	treatment effect on tocopherols, total phenolics and			
	fatty acids in table olives (Olea europaea L.).		M22	5
	Notulae Botanicae Horti Agrobotanici Cluj-			
	<i>Napoca</i> , 51(1).			
	https://doi.org/10.15835/nbha51113029			
5.	Paunović, D.M., Marković, J.M., Stričević, L.P.,			
	Vujasinović, V.B., Rabrenović, B.B. (2021). The			
	influence of cutting thickness, shape and moisture		M24	3
	content on oil absorption during potato frying.		1712 1	
	Journal of Agricultural Sciences, 66(1), 67-74.			
	https://doi.org/10.2298/JAS2101067P			
6.	Paunović, D.M., Demin, M.A., Petrović, T.S.,			
	Marković, J.M., Vujasinović, V.B., Rabrenović,			
	B.B. (2020). Quality parameters of sunflower oil		M24	3
	and palm olein during multiple frying. Journal of		14121	
	Agricultural Sciences, 65(1), 61-68.			
	https://doi.org/10.2298/JAS2001061P			
	УКУПНО	<u>.</u> ==		41,0
	Зборници међународних научних скупова	M30		
7.	Paunović, D.M., Marković, J.M., Ivanović, E.R.,			
	Rabrenović,, B.B., Despotović, S.M., Banjac, N.R.			
	(2019). Stability of carotenoids in pumpkin during		M34	0,5
	the different heat treatments. 1st International			
	Conference on Advanced Production and			

	Processing (pp. 32). 10-11 October, Novi Sad, Serbia. ISBN 978-86-6253-102-5		
8.	Paunović, D.M., Demin, M.A., Petrović, T.S., Marković, J.M., Vujasinović, V.B., Rabrenović, B.B. (2019). The quality of sunflower oil and palm olein during the production of french fries. 1 st International Conference on Advanced Production and Processing (pp. 34). 10-11 October, Novi Sad, Serbia. ISBN 978-86-6253-102-5	M34	0,5
9.	Paunović, D.M., <u>Marković</u> , J.M., Rabrenović, B.B., Laličić-Petronijević, J.G., Rajić, J.R., Petrović, T.S. (2021). The influence of different heat treatment on the vitamin c content in pepper (<i>Capsicum annuum</i> L.). Book of Abstracts of 2 nd International UNIfood Conference, University of Belgrade (pp. 180). 24th-25th September, Belgrade, Serbia. ISBN 978-86-7522-066-4	M34	0,5
10.	Despotović, S., Paunović, D., Marković, J., Nedović, V., Djordjević, S., Veljović, S., Martinović, A. (2021). Medicinal and aromatic herbs as functional ingredients for specialty beverages. Book of Abstracts of IBSC International Bioscience Conference and the 8th International PSU – UNS Bioscience, Conference Towards the SDG Challenges (pp. 94-95). 25 th -26 th November, Novi Sad, Serbia.	M34	0,5
11.	Marković, J., Mihajlović, D., Mašković, P., Banjac, N., Mašković, J., Ivanović, E. (2022). Effect of different heat treatments on antioxidative activity in pumpkin (<i>Cucurbita maxima</i>). Book of abstracts of 1 st European Symposium on Phytochemicals in Medicine and Food (1-EuSPMF) (pp.72). 7 th -9 th September, Belgrade, Serbia. ISBN 978-86-7834-408-4	M34	0,5
12.	Marković, J.M., Nedović, V.A., Salević-Jelić, A.S., Pejić, L.D., Mihajlović, D.M. (2023). The possibility of using horseradish leaves pomace in the food industry. Book of Abstracts of 6 th International Symposium of Agricultural	M34	0,5

	Engineering (pp. 44). 19 th -21 st October, Belgrade, Serbia. ISBN 978-86-7834-423-7		
13.	Marković, J., Nedović, V., Salević-Jelić, A., Lević, S., Đorđević, V., Belošević, S., Mihajlović, D. (2023). Antioxidant potential and phenolics content of horseradish root juice encapsulated within different carbohydrate matrices. Book of Abstracts of International Conference on Biochemical Engineering and Biotechnology for Young Scientists (pp. 52), 7 th -8 th December, Belgrade, Serbia. ISBN 978-86-7401-389-2	M34	4 0,5
14.	Marković, J., Mihajlović, D., Salević-Jelić, A., Lević, S., Đorđević, V., Belošević, S., Nedović, V. (2023). Physicochemical characterization of spraydried horseradish root juice encapsulated within maltodextrin/alginate. Book of Abstracts of International Conference on Biochemical Engineering and Biotechnology for Young Scientists (pp. 53), 7 th -8 th December, Belgrade, Serbia. ISBN 978-86-7401-389-2	M34	4 0,5
15.	Belošević, S.D., Milinčić, D.D., Salević-Jelić, A.S., Marković, J.M., Lević, S.M., Pešić, M.B., Đorđević, V.B., Marjanović S.M., Nedović, V.A. (2023). Broccoli microgreens-apple juice as novel beverages: total phenolic, flavonoids and antioxidant activity. Book of Abstracts of International Conference on Biochemical Engineering and Biotechnology for Young Scientists. (pp.68). 7 th -8 st December, Belgrade, Serbia. ISBN 978-86-7401-389-2	M34	4 0,5
16.	Belošević, S.D., Milinčić, D.D., Salević-Jelić, A.S., Marković, J.M., Lević, S.M., Pešić, M.B., Dorđević, V.B., Marjanović S.M., Nedović, V.A. (2023). Characterization of amaranth (<i>Amaranthus tricolor L.</i>) microgreens juice encapsulated within inulin and maltodextrin. Book of Abstracts of International Conference on Biochemical Engineering and Biotechnology for Young Scientists. (pp.69). 7 th -8 st December, Belgrade, Serbia. ISBN 978-86-7401-389-2	M34	4 0,5

17. Marković, J. M., Salević-Jelić, A. S., Belošević, S. D., Pejić, L., D., Rabrenović, B. B., Lević, S. M. Nedović, V. A., Mihajlović, D. M. (2024) Encapsulated horseradish leaf juice: A potential alternative to synthetic antioxidants in mayonnaise production. Book of Abstracts of 3 rd International UNIFood Conference, University of Belgrade (pp. 119). 28 th -29 th June, Belgrade, Serbia. ISBN 978-86-7834-438-1	M34	0,5
18. Marković, J. M., Salević-Jelić, A. S., Milinčić, D. D., Belošević, S. D., Gašić, U. M., Đorđević, V. B. Pešić, M. B., Lević, S. M., Mihajlović, D. M. Nedović, V. A. (2024). Horseradish leaf juice encapsulates: Physicochemical spectrophotometric, and chromatographic characterization. Book of Abstracts of 3 rd International UNIFood Conference, University of Belgrade (pp. 160). 28 th -29 th June, Belgrade, Serbia ISBN 978-86-7834-438-1	M34	0,5
19. Belošević, S. D., Milinčić, D. D., Salević-Jelić, A S., Marković, J. M., Lević, S. M., Pešić, M. B. Marjanović, S. M., Đorđević, V. B., Nedović, V. A (2024). Encapsulation of broccoli microgreen juice Phytochemical composition and antioxidan activity. Book of Abstracts of 3 rd Internationa UNIFood Conference, University of Belgrade (pp 38). 28 th -29 th June, Belgrade, Serbia. ISBN 978-86-7834-438-1	M34	0,5
20. Belošević, S. D., Milinčić, D. D., Salević-Jelić, A S., Marković, J. M., Pavlović, V. B., Lević, S. M. Pešić, M. B., Marjanović, S. M., Đorđević, V. B. Nedović, V. A. (2024). The influence of carbohydrate carriers on the morphology and physical properties of red beet microgreen juice encapsulates. Book of Abstracts of 3 rd Internationa UNIFood Conference, University of Belgrade (pp 157). 28 th -29 th June, Belgrade, Serbia. ISBN 978-86-7834-438-1	M34	0,5
21. Marković, J., Salević-Jelić, A., Milinčić, D. Belošević, S., Gašić, U., Đorđević, V., Pešić, M.	3.42.4	0,5

	Lević, S., Mihajlović, D., Nedović, V. (2024). Freeze-dried horseradish leaf pomace as a novel valuable source of antioxidants. Book of Abstracts of 5 th International Congress "Food Technology, Quality and Safety – FoodTech 2024" (pp. 33). 16 th -18 th October, Novi Sad, Serbia. ISBN 978-86-7994-063-6		
22.	Marković, J., Salević-Jelić, A., Belošević, S., Pejić, L., Đorđević, V., Rabrenović, B., Lević, S., Nedović, V., Mihajlović, D. (2024). Horseradish leaf by-product: a natural antioxidant in mayonnaise production. Book of Abstracts of 5 th International Congress "Food Technology, Quality and Safety – FoodTech 2024" (pp. 34). 16 th -18 th October, Novi Sad, Serbia. ISBN 978-86-7994-063-6	M34	0,5
23.	Belošević, S., Milinčić, D., Salević-Jelić, A., Lević, S., Marković, J., Marjanović, S., Đorđević, V., Pešić, M., Pavlović, V., Nedović, V. (2024). Morphology and physical properties of broccoli microgreen juice encapsulated within maltodextrin and inulin. Book of Abstracts of 5 th International Congress "Food Technology, Quality and Safety – FoodTech 2024" (pp. 57). 16 th -18 th October, Novi Sad, Serbia. ISBN 978-86-7994-063-6	M34	0,5
24.	Belošević, S., Milinčić, D., Salević-Jelić, A., Lević, S., Marković, J., Marjanović, S., Đorđević, V., Pešić, M., Nedović, V. (2024). Phytochemical composition and antioxidant properties of encapsulated powders of red beet microgreen juice within carbohydrate carriers. Book of Abstracts of 5 th International Congress "Food Technology, Quality and Safety – FoodTech 2024" (pp. 121). 16 th -18 th October, Novi Sad, Serbia. ISBN 978-86-7994-063-6	M34	0,5
25.	Belošević, S., Marjanović, S., <u>Marković, J.</u> , Todorović, A., Lević, S., Salević-Jelić, A., Stanković, M., Marković, Z., Nedović, V. (2024). Aquaponic system in the cultivation of microgreens and sprouts: a review. Book of Abstracts of 21 st	M34	0,5

International Conference on Thermal Scient Engineering of Serbia (pp. 52). 22 nd -25 th C Niš, Serbia. ISBN 978-86-6055-191-9 26. Belošević, S., Milinčić, D., Salević-Jelić, A.	October,		
Niš, Serbia. ISBN 978-86-6055-191-9 26. Belošević, S., Milinčić, D., Salević-Jelić, A.			
26. Belošević, S., Milinčić, D., Salević-Jelić, A.	- 11		
	, Lević,		
S., Marković, J., Marjanović, S., Đorđe	vić, V.,		
Pešić, M., Nedović, V. (2024). Application	of cold		
pressing process to develop potential functio	nal and		
sensory acceptable red beet microgreen			
beverage: total phenolic content and anti-		M34	0,5
properties. Book of Abstracts of 21st Intern			
Conference on Thermal Science and Engineer			
Serbia (pp. 69). 22 nd -25 th October, Niš,	_		
ISBN 978-86-6055-191-9	Scroia.		
	УПНО		10
Зборници националних научних скупол			10
27. Paunović, D.M., Marković, J.M. (2021). P			
nutritivnih i senzornih svojstava pri preradi			
Zbornik izvoda X simpozijuma sa međuna	•		
učešćem Inovacije u ratarskoj i povi		M64	0,5
3 1	3		
proizvodnji (str. 19-20). 21-22. oktobar, B	eograu,		
Srbija. ISBN 978-86-7834-383-4	VIIIIO		0.7
	УПНО		0,5
Одбрањена докторска дисертација	M70		
28. Marković, J. (2025). Uticaj inkapsuliranog			
liofilizovanog tropa korena i lista rena (Arn			
rusticana L.) na oksidativnu stabilnost i	kvalitet		
· · · · · · · · · · · · · · · · · · ·	C 1	M70	6
majoneza tokom skladištenja. Mentori: p		1.1.0	_
		1.2,0	
majoneza tokom skladištenja. Mentori: p	edović.		
majoneza tokom skladištenja. Mentori: p Dragana Mihajlović i prof. dr Viktor N	edović. ologija.		

^{*}Сагласно Правилнику о стицању истраживачких и научних звања ("Службени гласник Републике Србије", бр. 80/2024, 70/2025) и прилогу 1 Правилника (Критеријуми за одређивање категорије научноистраживачих резултата и начин навођења) нормиране су вредности због већег броја коаутора (>7).

Кандидаткиња др Јована Марковић се у области научноистраживачког рада бави истраживањима у области прехрамбене технологије и биохемије. Истраживања обухватају: 1) анализу активних компонената из природних извора (воће, поврће, ароматично биље, микробиље, нуспроизводи прераде хране); 2) различите начине екстракције активних компонената из природних извора; 3) инкапсулацију биоактивних компонената различитим

техникама инкапсулације у различите матриксе; 4) физичко-хемијску карактеризацију произведених инкапсулата; 5) утицај различитих начина прераде на задржавање нутритивних и сензорних својстава компонената из природних извора; 6) примену антиоксиданаса из природног извора за спречавање оксидације прехрамбених производа богатих уљима.

Највећи број објављених радова кандидаткиње односи се на истраживања из области везаних за процену биоактивног потенцијала рена (Armoracia rusticana L.), тј. његовог хладно пресованог сока корена (2, 13, 14) и листа (1, 17, 18), као и тропова заосталих као нуспроизвода хладног пресовања (12, 21, 22). Осим тога, испитивана је могућност њихове примене у прехрамбеном производу (мајонез) у циљу спречавања оксидације, очувања квалитета и продужења рока трајања. То је био и предмет истраживања у оквиру докторске дисертације (28). Резултати ових истраживања указују на обећавајући потенцијал природних антиоксиданаса (фенолних једињења, флавоноида и фенолних киселина) садржаних у корену и листу рена за примену у прехрамбеној индустрији. У циљу очувања биоактивног потенцијала рена и постизања погодније форме за додавање у прехрамбене производе, сокови су подвргнути поступку инкапсулације техником спреј сушења унутар различитих комбинација полисахаридних носача, док су тропови подвргнути поступку лиофилизације. Примена ових техника позитивно је утицала на физичко-хемијске, морфолошке и биоактивне карактеристике компонената рена, као и на њихову стабилност током дугорочног складиштења. Посебан сегмент ових истраживања односио се на производњу мајонеза са додатком компонената рена. Додавањем ове биолошки вредне биљне сировине у прехрамбени производ постигнути су бројни бенефити, као што су: одлагање формирања примарних и секундарних производа оксидације, побољшање квалитета и продужење рока трајања производа и смањена употреба синтетичких антиоксиданаса у прехрамбеној индустрији. Осим тога, ова група истраживања пружа веома интересантан приступ валоризацији тропова рена и потпуном искоришћењу биљне сировине, који се уклапа у концепт "зелене хемије" и еколошке одрживости.

Посебна група радова (4, 7, 9, 11, 27) односила се на истраживања која обухватају испитивање утицаја различитих начина прераде на задржавање нутритивних, биоактивних и сензорних својстава компонената из природних извора (поврћа и воћа). Процењен је садржај витамина Ц након различитих термичких третмана паприке (*Capsicum annuum* L.), који се уобичајено користе у индустријској преради, као и у домаћинству. Губитак витамина Ц био је значајно нижи приликом печења паприке на плотни у поређењу са другим начинима термичке обраде (кување у отвореном и затвореном суду, печење у микроталасној пећници и пржење). Такође, испитан је утицај термичке обраде на садржај токоферола, фенолних једињења и антиоксидативну активност зелених и црних маслина (*Olea europaea* L.), као и њихов састав масних киселина, при чему су већи губици забележени код црних него код зелених маслина. Изведена су и два истраживања о утицају различитих третмана суве и влажне топлотне обраде (кување, печење у конвенционалној и микроталасној пећници) на

садржај укупних каротеноида и антиоксидативни потенцијал врсте *Cucurbita maxima*. Стабилност каротеноида и антиоксидативни потенцијал овог поврћа варирали су у зависности од врсте примењеног третмана. Осим тога, у овој групи истраживања анализиран је утицај топлотне обраде на промене сензорних и нутритивних својстава, сварљивости протеина и дијетних влакана, као и на хигијенску и здравствену исправност хране.

Фокус значајног броја радова (3, 16, 19, 20, 23, 24) био је на физичко-хемијској карактеризацији хладно пресованих и инкапсулираних сокова следећих врста микробиља: броколи, амарант и цвекла, као богатих извора беталаина и фенолних једињења, која испољавају широк спектар позитивних ефеката на људско здравље. Библиографске јединице број 15 и 26 обухватиле су развој потенцијално функционалних напитака од сокова микробиља и јабуке, док је прегледни рад број 25 фокусиран на примену система аквапоније, као нове технологије за узгој микробиља са смањеном употребом природних ресурса, уз позитиван утицај на параметре раста и фитохемијски садржај.

Кандидаткиња је део својих истраживања (5, 6, 8) усмерила на испитивање квалитета рафинисаног палминог олеина у односу на рафинисано сунцокретово уље током производње помфрита. Осим тога, испитиван је утицај дебљине сечења, садржаја влаге и облика кромпира на усвајање палминог олеина, као и самог квалитета овог уља, током производње чипса и помфрита. На основу резултата ових истраживања и испитиваних параметара, може се закључити да је палмин олеин био погоднији за пржење кромпира, док су дебљина, површина и садржај влаге кромпира имали значајан утицај на апсорпцију уља приликом производње чипса и помфрита.

Библиографска јединица број 10 обухвата развој и производњу специјалних напитака формулисаних од воћних сокова и екстраката лековитих и ароматичних биљака, које у свом саставу имају високу концентрацију биолошки активних компонената и испољавају значајну антиоксидативну активност. Наиме, додавањем биљних чајева повећани су нутритивни квалитети и здравствене користи обогаћених напитака, уз одржавање њихове сензорне прихватљивости.

6. КВАНТИФИКАЦИЈА НАУЧНИХ РЕЗУЛТАТА КАНДИДАТКИЊЕ

Кандидаткиња др Јована Марковић је самостално или у сарадњи са другим ауторима, објавила 28 публикација, од којих 4 рада у међународним часописима (један у категорији М21а+, два у категорији М21 и један у категорији М22), 2 рада у водећим националним часописима (категорија М24), 20 саопштења на међународним научним скуповима (категорија М34), 1 саопштење на националном научном скупу (категорија М64) и одбрањена докторска дисертација (категорија М70) (Табела 3).

Табела 3. Број остварених резултата и бодова др Јоване Марковић

ПРЕГЛЕД НАУЧНО- ИСТРАЖИВАЧКИХ РЕЗУЛТАТА	Број резултата	Вредност М	Укупно остварено
Рад у водећем међународном часопису категорије M21a+	1	M21a+=20	20
Рад у водећем међународном часопису категорије M21	2	M21=8	10,0
Рад у међународном часопису категорије M22	1	M22=5	5,0
Рад у водећем националном часопису категорије M24	2	M24=3	6,0
Саопштења са међународних скупова штампана у изводу	20	M34=0,5	10,0
Саопштења са скупова националног значаја штампана у изводу	1	M64=0,5	0,5
Одбрањена докторска дисертација	1	M70=6	6,0
		Укупно	57,5

Према критеријумима Министарства науке, технолошког развоја и иновација, број коефицијената научне компетентности публикованих радова кандидаткиње др Јоване Марковић је 57,5.

Поређење са минималним квантитативним условима за избор у тражено научно звање

Испуњење минималних квантитативних резултата за стицање научног звања научни сарадник (област науке: техничко - технолошке и биотехничке науке) приказани су у Табели 4.

Табела 4. Минимални квантитативни резултати за стицање научног звања научни сарадник (област науке: техничко-технолошке и биотехничке науке)

Диференцијални услов за оцењивани период за избор у научно звање: научни сарадник	Неопходно	Остварени нормирани број бодова
Укупно	16	57,5
Обавезни: M21+M22+M23+M24+M81-84+M91-98+M101- 103+M108	6	41,0

7. ЗАКЉУЧАК И ПРЕДЛОГ КОМИСИЈЕ

Размотривши пријаву кандидаткиње и приложене научне радове, анализом целокупног научноистраживачког рада и постигутих резултата, Комисија оцењује да др Јована Марковић, у складу са критеријумима дефинисаним Законом о науци и страживањима и Правилником о стицању истраживачких и научних звања, испуњава све услове неопходне за избор у звање научни сарадник. Мишљење Комисије засновано је на чињеницама изнетим у Извештају, а обухвативши параметре који доказују научну самосталност, компетентност, цитираност радова и практичну примену реализованих истраживања које је кандидаткиња др Јована Марковић остварила, указујући да се ради о формираном и веома активном истраживачу у области прехрамбене технологије.

Стога Комисија предлаже Изборном већу Пољопривредног факултета Универзитета у Београду, да усвоји предлог за избор др Јоване Марковић у научно звање **НАУЧНИ САРАДНИК**, за област Биотехничких наука - Прехрамбено инжењерство, односно за научну дисциплину Технологија биљних производа и ужу научну дисциплину Методе конзервисања и да такав предлог достави одговарајућем Матичном одбору на коначно усвајање.

У Београду, 26.09.2025. године

ЧЛАНОВИ КОМИСИЈЕ

др Драгана Михајловић, редовни професор Универзитет у Београду – Пољопривредни факултет (ужа научна област: Наука о конзервисању и врењу)

(председник)

др Виктор Недовић, редовни професор Универзитет у Београду – Пољопривредни факултет (ужа научна област: Наука о конзервисању и врењу)

70, grat

др Верица Ђорђевић, доцент

Универзитет у Београду – Технолошко-металуршки факултет (ужа научна област: Хемијско инжењерство)

ПРИЛОЗИ

Прилог 1. Публикације

Food Chemistry 464 (2025) 141777

Contents lists available at accenceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as potential antioxidants in mayonnaise production

- * University of Belgrade, Faculty of Agriculture, Ospartaunt of Food Technology and Buchemistry, 11000 Belgrade, Serbia b University of Belgrade, Institute for Biological Research: "Station Scarbook", National Justinae of Republic of Serbia, Department of Plant Physiology, 12060 Belgrade,
- 1 University of Belgrade, Faculty of Agriculture, Department of Machimietics and Physics, 11080 Belgrade, Sorbio

ARTICLE INFO

Krywarde Astinoidante Phenolic compounds Environmentation Polysaccharides blend based carriers Horsensdish lest juice Mayonnaise

ABSTRACT

This study aimed to encapsulate cold-pressed horseradish leaf juice within multodextrin/alginste (MD/AL), maltodextrin/goar gum (MD/GG), and maltodextrin/gum Arabic (MD/GA) by spray-drying, to characterize the emcapsulates, and to test their potential as mayonaise oxidation-preventing ingredients. The encapsulates exhibited desirable physicochemicsi, morphological, structural, and thermal properties, highlighting MD/GA-containing encapsulates, especially regarding high encapsulation yield (78.50 %). Also, encapsulates contained a significant amount of phenolics, which were stable during freezer storage. The encapsulates successfully delayed the mayonnaise oxidation: 31.91–38.94 % more than the synthetic autioxidant ethylenediaminetetraacetic acid, especially highlighting MD/AL-containing encapsulates. Also, the encapsulates improved product quality with a higher piff and lower acidity after storage compared to the controls. Overall acceptability of encapsulates-containing mayorassises and commercial mayoranise did not differ significantly. This study contributes to sustainable development by providing new insights into the valorization of horsers dish leaves, as a promising alternative to synthetic additives to prolong the oxidative stability and shelf-life of high-oil-containing

1. Introduction

Despite the increasing consumer trend towards lower-calorie products, mayonnaise is still one of the most consumed high-oil-containing sauces worldwide (Mirzanajañ-Zanjani et al., 2019). Its special mild flavor, attractive texture, and creamy mouthfeel make it a very popular product served on tables all over the world (Blejan & Nour, 2023), usually alongside salads, sandwiches, and many other food products. However, due to the lipid structure i.e., composition and content (approximately 70-80 %), it is very susceptible to oxidative damage, resulting in the formation of rancid flavor, changes in aroma, color, and texture, as well as a reduction of nutritional value and shelf-life (Bleim A Nour, 2023; Minusian et al., 2024). During homogenization, a large surface area of the oil is exposed to the oxygen dissolved in the aqueous phase and the air bubbles trapped in the emulsion, which contributes to the intensification of oxidative reactions in mayounnise (Moradi et al. 2023). The effect of external energy (such as light) on unsuturated lipids in the presence of catalysts (such as transition metals) leads to the formation of free radicals (Ghorinan Gorji et al., 2016). The resulting free radicals react with molecular oxygen and form peroxide radicals (primary oxidation products). They are tasteless, but can be further decomposed into aidehydes, ketones, alcohols, hydrocarbons, volatile organic acids, and epoxy compounds (secondary oxidation products), which are responsible for the rancid flavor of mayonnaise (Chorban

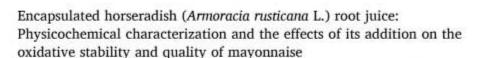
E-mail addresses: povana markovietingrif hg.m.rs. (J. Markovic), musalestrif grif hg.m.rs. (A. Salevic-Jelic), daniel miliocinis agrif hg.m.rs. (D. Miliocic), musalestrif grif hg.m.rs. (U. Gesic), viverif agrif hg.m.rs. (V. Pavlovic), billesarringrif hg.m.rs. (B. Bahrenovic), mesicingrif hg.m.rs. (M. Pesic), slevini agrif hg.m.rs. (S. Lević), dragonapičagrif.bg.ac.es (D. Mihajlović), vnedovicilagrif.bg.ac.es (V. Nedović).

https://doi.org/10.1010/j.foodchem.2024.141777

Received 30 May 2024; Received in revised form 21 October 2024; Accepted 23 October 2024 Available online 24 October 2024 0308-8146/© 2024 Published by Elsevier Ltd.

^{*} Corresponding withor.

^{**} Corresponding author.



Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.alvevier.com/locata/jfoodeng

ARTICLEINFO

Encapsulation Berserarlish root juice Phenolic compounds Antioxidunto Oxidative stability

ABSTRACT

The cold-pressed horseradish (Armoracia muticana L.) root inice was used for spray-drying encapsulation within different biopolymeric carriers (maltodextrin/alginste, maltodextrin/guar gum, and maltodextrin/gum Arabic) to ensure easier handling and preservation of its bioactive compounds. The obtained encapsulates were added in mayonnaise formulations as potential substitutes for synthetic antioxidants. Physicochemical, spectrophotometric, and chromatographic analyses of the encapsulates showed the presence of various phenolic compounds and a pronounced antioxidant activity. The encapsulates were stable in terms of total phenolic content retention over 6 months of storage at -18 °C. The determination of the peroxide and p-anisidine values as well as the accelerated uxidation stability analysis showed that the borseradish encapsulates added to the mayonnaise were more potent in maintaining the oxidative stability of the mayonnaise than the synthetic antioxidant. The added encapsulates positively affected the pH and acid values of the mayonnaises. Also, mayonnaises with encapsulates were sensory acceptable. These results suggest that encapsulated horseradish root juice within various curriers could find useful application as a natural antioxidant in food products to prevent oxidation and prolong shelf-life.

1. Introduction

Although people have recently been tending towards healthier diets and lower calorie intake, mayonnaise is still a very popular condiment due to its delicious taste, appealing texture, and creamy mouthfeel (Mirzanajafi-Zanjani et al., 2019). Mayonnaise can be stored at room temperature, but its quality deteriorates over time due to autoxidation of the unsaturated fatty acids (Ghorbani Gorji et al., 2016). Various synthetic antioxidants such as TBHQ (t-butylhydroxyquinone), EDTA (ethylenediaminetetrancetic acid), BHA (butylhydroxyanisole), and BHT (butylhydroxytoluene) are usually used in the mayonnaise production, effectively suppressing oxidation and prolonging the shelf-life of this product (Ahmadi-Dastgerdi et al., 2019; Chotphruethipong and Benjakul, 2019). They are characterized by high stability, low cost, good scavenging activity, and easy procurement (Xu et al., 2021). However, some studies have identified synthetic antioxidants as toxicological and carcinogenic agents (Eskandani et al., 2014; Ogundele, 1999; Xu et al., 2021). Therefore, due to concerns about synthetic food additives, consumer demand for healthy foods and the use of antioxidants from natural sources is increasing (Kwon et al., 2015; Mitterer-Dultoé et al., 2020). Until now, extracts from rosemary (Savani et al., 2023), Ferulago angulata (Alizadeli et al., 2019), sage (Rasmy et al., 2012), grape seed (Altunkaya et al., 2013), fruits/vegetables (Luzar et al., 2022; Soltan et al., 2023), and various spices (Kwon et al., 2015) were successfully incorporated into mayonnaise, contributing to its prolonged oxidative stability. However, to our knowledge, the addition of encapsulated horseradish juice into mayonnaise has not yet been investigated.

Horseradish (Armoracia rusticana L.) belongs to the Brassicaceae family and is characterized by a strong, spicy flavor and odor as a result of isothiocyanates released by enzymatic hydrolysis of glucosinolates

E-mail addresses: vneckovinjingrif.log.ac.m (V.A. Nedović), draganapillagrif.log.ac.m (D.M. Milaijlavić).

https://doi.org/10.1016/1.foodeng.2024.112189

Received 11 January 2024; Received in revised form 10 April 2024; Accepted 11 June 2024 Available online 12 June 2024 0260-8774/© 2024 Published by Elsevier Ltd.

^{*} University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, Neuronjans 6, 11000 Belgrade, Serbia
* University of Belgrade, Institute for Biological Research "Ninisc Stanković", National Institute of Republic of Serbia, Department of Plant Physiology, Bulevar depoint Stefana 142, 11060 Belgrade, Serbia

^{*} Corresponding author.

^{**} Corresponding author.

Article

Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Antioxidant and Sensory Properties

Spasoje D. Belošević ^{1,4}, Danijel D. Milinčić ^{2,4}, Uroš M. Gašić ³, Aleksandar Ž. Kostić ², Ana S. Salević-Jelić ¹, Jovana M. Marković ¹, Verica B. Đorđević ⁴, Steva M. Lević ¹, Mirjana B. Pešić ^{2,4} and Viktor A. Nedović ^{1,4}

- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; sbelosevic@agrif.bg.ac.rs (S.D.B.); ana.salevic@agrif.bg.ac.rs (A.S.S.-J.); jovana.markovic@agrif.bg.ac.rs (J.M.M.); slevic@agrif.bg.ac.rs (S.M.L.)
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; danijel.milincic@agrif.bg.ac.rs (D.D.M.); akostic@agrif.bg.ac.rs (A.Z.K.)
- Department of Plant Physiology, Institute for Biological Research Sinifa Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; uros gasic@ibiss.bg.ac.rs
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; vmanojlovic@tmf.bg,ac.rs
- Correspondence: mpesic@agrif.bg.ac.rs (M.B.P.); vnedovic@agrif.bg.ac.rs (V.A.N.);
 Tel.: +381-11-441-3315 (M.B.P.); +381-441-3154 (V.A.N.)
- * 181-11-441-3315 (M.B.P.); *381-441-3154 (V.A.N.)
 * These authors equally contributed to this work.

Abstract: The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds, Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS* scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.

Keywords: broccoli microgreens; amaranth microgreens; red beet microgreens; microgreen juices; antioxidant activity; apigenin C-glycosides

Citation: Belošević, S.D.; Milinčić, D.D.; Gašić, U.M.; Kostić, A.Ž.; Salević-Jelić, A.S.; Marković, J.M.; Dorđević, V.B.; Lević, S.M.; Pešić, M.B.; Nedović, V.A. Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Anticoplant and Sensory Properties. Foods 2024, 13, 757. https://doi.org/10.3390/foods 13050757.

Academic Editors: Gianfuca Nardone, Rosaria Viscocchia and Francesco Bimbo

Received: 25 January 2024 Revised: 19 February 2024 Accepted: 27 February 2024 Published: 29 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Microgreens are recognized as new crops and potential foods of the future [1]. They represent a novel and promising source of highly valuable bioactive compounds with health-promoting effects [2–6]. The most commonly grown and studied microgreens are from the Brassicaceae and Amaranthaceae families with crops such as broccoli, cabbage, kale, argula, red beet, chard, amaranth, etc. [1]. So far, the aforementioned microgreen species have been mostly consumed in raw form or as culinary ingredients in dishes due to their high content of bioactive compounds and specific flavor [7]. Previous studies have shown that broccoli, amaranth and red beet microgreens are high in bioactive compounds

Mihajlović D et al. (2023) Notulae Botanicae Horti Agrobotanici Cluj-Napoca Volume 51, Issue 1, Article number 13029 DOI:10.15835/nbha51113029

Research Article

Heat treatment effect on tocopherols, total phenolics and fatty acids in table olives (Olea europaea L.)

Dragana MIHAJLOVIĆ¹, Slavica ČOLIĆ², Jovana MARKOVIĆ¹, Dejana PERIŠIĆ¹, Jasmina RAJIĆ³, Tamara PREMOVIĆ⁴, Biljana RABRENOVIĆ^{1*}

University of Bolgrade, Esculty of Agriculture, Nemanjina 6, 11080 Zemun-Bolgrade, Serbia; dragomaj@agrif.bg.ac.rs; jovena.markevic@agrif.bg.ac.rs; perisidejana@gmail.com; hiljanar@agrif.bg.ac.rs ("corresponding author)

"Institute for Science Application in Agriculture, Bulevar despota Stefana 68b, 11000 Belgrade, Serbia; scolie@ipn.bg.ac.rs

"Academy of Technical Vocational Studies, Department of Traffic, Mechanical Engineering and Protection Engineering-ATSSB, Nade

Dimié 4, 11080 Zemun-Belgrade, Serbia; prajec@atub.edu.rs

*University Union-Nikola Tesla of Belgrade, Faculty of Information Technologies and Engineering, Staro sajmilto 29, 11070, Novi Beograd, Belgrade, Seebia; tamara.premovic@gmail.com

Abstract

The olive fruits are rich source of oil, vitamins, minerals, organic acids and pigments. The fruits contain high level of bioactive compounds. The aim of this study was to examine the effect of heat treatment on tocopherols, total phenolics and antioxidant activity in green and black olives, as well as their fatty acid composition. The instrumental methods used in this experiment were high performance liquid chromatography (HPLC), gas chromatography with flame ionization detection (GC/FID) and spectrophotometric methods. The results revealed that the \$+y-tocopherols content after the heat treatment had the biggest reduction, which was 68.4% for green and 80.2% for black olives. Also, a significant loss of total phenolic content was observed after heat treatment in green and black olives by 18.6% and 18.4%, respectively, as well as antioxidant activity (decrease up to 28.1%). The most abundant fatty acids in green and black olives were oleic (C18:1), palmitic (C16:0) and linoleic acid (C18:2). The changes in fatty acids composition during the heat treatment occurred mostly at the level of polyunsaturated fatty acids, especially linolenic acid (C18:3) in black olives had the significant reduction (by 57.4%) in relation to the initial quantity.

Keywords: fatty acids; GC/FID; HPLC; olive; tocopherols; total phenolics

Introduction

The olive (Olea europaea L.) is one of the oldest and most important fruit in Mediterranean countries, which is grown for its edible fruits (Boskou, 2006). As the fruit ripens it changes colour from green to bluishpurple, and at full maturity it turns black (Boskou, 2006). The green colour of the fruits comes from chlorophyll, while the purple and bluish colour comes from anthocyanins. The black colour is formed by the oxidation of phenolic compounds including oleuropein (Boskou, 2006: Omar, 2010). The chemical

Received: 95 Dec 2022. Received in revised form: 23 Jan 2023. Accepted: 07 Feb 2023. Published online: 22 Feb 2023.

From Volume 49, Issue 1, 2021, Notulae Botanicae Horti Agrobotanici Cluj-Napoca journal uses article numbers in place of the traditional method of continuous pagination through the volume. The journal will continue to appear quarterly, as before, with foor annual numbers.

THE INFLUENCE OF CUTTING THICKNESS, SHAPE AND MOISTURE CONTENT ON OIL ABSORPTION DURING POTATO FRYING

Dragana M. Paunović^{1*}, Jovana M. Marković¹, Lazar P. Stričević¹, Vesna B. Vujasinović², Milica S. Stevanović¹, Aleksandra L. Čirković¹ and Biljana B. Rabrenović¹

> ¹University of Belgrade-Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia ²University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

Abstract: Potato chips and French fries are products which are often used in the human diet. The aim of this study was to investigate the influence of cutting thickness, shape and moisture content on palm olein uptake, as well as the quality of the palm olein during the production of fried potatoes. Blanching operation was conducted in water for 3 minutes at a temperature of 85°C, while the frying process was conducted in palm olein for 3 minutes at a temperature of 165°C. The peroxide value and free fatty acid content (% oleic acid) were determined by standard analytical methods. The oil content in samples was determined by the standard Soxhlet extraction (the reference method). The results showed that the potato chips had approximately four times more oil uptake compared to potato sticks. The oil content was significantly lower in blanched potato slices (by 43.3%) but significantly higher in blanched potato sticks (by 53.5%) compared to unblanched samples. The analyzed quality parameters of palm olein were within the allowable value range. Based on the results obtained in this study, it can be concluded that the thickness, surface area and moisture content of the potato had a significant effect on oil uptake.

Key words: fried potato, palm olein, surface area, peroxide value, free fatty acids content.

Introduction

The potato (Solanum tuberosum) is a tuberous vegetable that is the most commonly used in human nutrition. The reasons for its widespread use are that the potato has a favourable economic factor, and it is available throughout the year (Popović-Djordjević et al., 2018). In terms of nutrition value, this vegetable is a

^{*}Corresponding author: e-mail: draganap@agrif.bg.ac.rs

Journal of Agricultural Sciences Vol. 65, No. 1, 2020 Pages 61-68 https://doi.org/10.2298/JAS2001061P UDC: 665.353.4 665.347.8 Original scientific paper

QUALITY PARAMETERS OF SUNFLOWER OIL AND PALM OLEIN DURING MULTIPLE FRYING

Dragana M. Paunović¹*, Mirjana A. Demin¹, Tanja S. Petrović¹, Jovana M. Marković¹, Vesna B. Vujasinović² and Biljana B. Rabrenović¹

> University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia
> ²University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

Abstract: The refined sunflower and palm oils are used in the food industry for the production of fried potatoes. Literary data have shown that palm oil had less tendency to degradation than sunflower oil due to its fatty acid composition. However, palm olein is a palm oil fraction and therefore has a different composition of fatty acids. The aim of this study was to investigate the quality of the refined palm olein in relation to the refined linoleic type sunflower oil during the production of fried potatoes. The oil samples were used for multiple frying during the seven days (40 minutes per day at a temperature of 165°C). The peroxide value and free fatty acid content (acid value) were determined by standard analytical methods. The results showed that the peroxide value in sunflower oil and palm olein increased by 75.0% and 77.8%, while the acid value increased by 50.0% and 26.8%, respectively, in relation to their initial values in the fresh oil samples. Based on these results, it can be concluded that the palm olein was more suitable for frying. However, this finding cannot be reported with certainty because the quality of the oil depends on many more parameters, not only on those analysed in this paper.

Key words: sunflower oil, palm olein, peroxide value, acid value.

Introduction

Potato frying is a widespread way of preparing potatoes for human consumption. The fried potatoes have a pleasant taste and a crunchy texture that make them very popular with consumers. The most common method of frying potatoes is deep frying in oil in the food industry as well as in the household. In industrial conditions, frying oil is used for a long period of time before being

^{*}Corresponding author: e-mail: draganap@agrif.bg.ac.rs

BOOK of ABSTRACTS

1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia

Title:

Book of Abstracts of the 1st International Conference on Advanced Production and Processing publishes abstracts from the following fields: Innovative Food Science and Bioprocesses, Nutraceuticals and Pharmaceuticals, Sustainable Development, Chemical and Environmental Engineering, Materials Design and Applications, Petroleum Refining and Production.

Publisher

University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

For publisher:

prof. Biljana Pajin, PhD, Dean

Editorial board:

Mirjana Jovicic, Ljiljana Popovic, Zdravko Sumic, Milica Hadnadjev, Olga Govedarica, Snezana Vucetic i Oskar Bera.

Editor-in-Chief:

Prof. Senka Vidović, PhD

Design and Printing Layout:

Saša Vulić, Tamara Krstić

CIP - Каталогизација у публикацији Библиотеке Матице српске, Нови Сад

658.5(048.3)

INTERNATIONAL Conference on Advanced Production and Processing (1; 2019; Novi Sad)

Book of abstracts [Elektronski izvor] / 1st International Conference on Advanced Production and Processing, 10th-11th October 2019 Novi Sad; [editor-in-chief Senka Vidović]. - Novi Sad: Faculty of Technology, 2019

Nasl. s naslovnog ekrana.

ISBN 978-86-6253-102-5

а) Технологија - Производња - Апстракти

COBISS.SR-ID 330974471

1st International Conference on Advanced Production and Processing 10th-11th October 2019 Novi Sad, Serbia

人名英英英英英国英英国人名

THE REPORT OF A PARTY OF THE RESIDENCE O

STABILITY OF CAROTENOIDS IN PUMPKIN DURING THE DIFFERENT HEAT TREATMENTS

<u>Dragana M. Paunović</u>, Jovana M. Marković, Evica R. Ivanović, Biljana B. Rabrenović, Saša M. Despotović, Nebojša R. Banjac

University of Belgrade-Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia draganap@agrif.bg.ac.rs

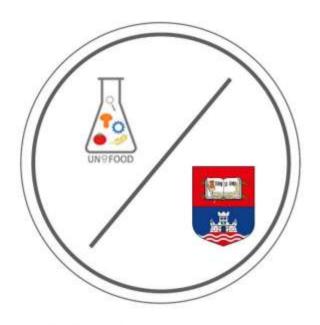
Pumpkin contains high content of carotenoids, the majority of which are alpha-carotene, beta-carotene, alpha-cryptoxanthin, lutein/zeaxanthin and violaxanthin. The main beneficial effect of carotenoids derives from their antioxidant activity, i.e. protecting cells against the harmful effects of free radicals. The aim of this study was to determine the content of total pumpkin carotenoids during cooking, baking in oven and microwave oven to examine how different heat treatments affect the stability of the carotenoids. The standard spectrophotometric method was used to determine the content of total carotenoids, measuring the absorbance of extracted samples at a wavelength of 445 nm. Samples were extracted by petrolether. According to the obtained results, the highest content of carotenoids was in raw pumpkin (172.93 μ g/g dry matter), then in an oven baked pumpkin (66.63 μ g/g dry matter), then in a microwave oven baked pumpkin (65.97 μ g/g dry matter) and the lowest content of total carotenoids was determined in cooked pumpkin (54.42 μ g/g dry matter). These results indicated that different heat treatments significantly affected the stability of carotenoids in pumpkin. The higher losses were during cooking, while the losses of baking in the oven and microwave oven were similar.

Keywords: pumpkin, heat treatment, total carotenoids, spectrophotometry

Acknowledgements: This work was supported by the Ministry of Education and Science of the Republic of Serbia (Grant No. 46001, 46010 and 31020).

THE QUALITY OF SUNFLOWER OIL AND PALM OLEIN DURING THE PRODUCTION OF FRENCH FRIES

<u>Dragana M. Paunović</u>¹, Mirjana A. Demin¹, Tanja S. Petrović¹, Jovana M. Marković¹, Vesna B. Vujasinović², Biljana B. Rabrenović¹


University of Belgrade-Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia draganap@agrif.bg.ac.rs

The refined sunflower and palm oil are used in the food industry for the production of French fries. Literary data have been shown that the palm oil had less tendency to degradation than sunflower oil, due to its fatty acid composition. However, palm olein is a palm oil fraction and therefore has a different composition of fatty acids. The aim of this study was to investigate quality of the refined palm olein in relation to the refined sunflower oil during the production of French fries. The oil samples were used for multiple frying during seven days (40 minutes per day at a temperature of 165 °C). The peroxide number and free fatty acids content (acid number) were determined by standard analytical methods. The results showed that the peroxide number in sunflower oil and palm olein increased by 75.0% and 77.8%, while the acid number increased by 50.0% and 26.8%, respectively, in relation to their initial values in fresh oil samples. Based on these results it can be concluded that the palm olein was more suitable for frying. However, this finding cannot be indicated with certainty because the quality of the oil depends on many more parameters, not only of analyzed in this paper.

Keywords: sunflower oil, palm olein, peroxide number, acid number

Acknowledgements: This work was supported by the Ministry of Education and Science of the Republic of Serbia (Grant No. 46001, 46010 and 31020).

UNIFOOD CONFERENCE

University of Belgrade

Book of Abstracts

Belgrade, September 24-25, 2021

CIP - Kategorizacija u publikaciji Narodna biblioteka Srbije, Beograd

СІР - Каталогизација у публикацији - Народна библиотека Србије, Београд

663/664(048)

UNIFOOD conference (2021; Beograd)

Program i zbornik radova = Book of Abstracts / Unifood conference, Belgrade, September 24-25, 2021; editors Mirjana Pešić, Živoslav Tešić].

Belgrade: University of Belgrade, 2021 (Beograd: Razvojno-istraživački centar Grafičkog inženjerstva TMF).

- 197 str.; 30 cm

Tiraž 30.

ISBN 978-86-7522-066-4

а) Храна - Апстракти

COBISS.SR-ID 47517705

UNIFOOD Conference, Belgrade September 24-25 2021 Book of Abstracts

Published by

University of Belgrade Studentski trg 1 11000 Belgrade www.bg.ac.rs, email: kabinet@rect.bg.ac.rs

For Publisher

Ivanka Popović, rector

Editors

Mirjana Pešić Živoslav Tešić

Cover Design Layout

Ivana Isaković

Circulation

30

ISBN 978-86-7522-066-4

Print

Razvojno-istraživački centar Grafičkog inženjerstva Faculty of Technology and Metallurgy, Kamegijeva 4, Belgrade

Published

2021.

UNIFood2021 Conference 24th-25th September 2021 University of Belgrade 2nd International UNIfood Conference

THE INFLUENCE OF DIFFERENT HEAT TREATMENT ON THE VITAMIN C CONTENT IN PEPPER (CAPSICUM ANNUUM L.)

Dragana M. Paunović¹, Jovana M. Marković¹, Biljana B. Rabrenović¹, Jovanka G. Laličić-Petronijević¹, Jasmina R. Rajić², Tanja S. Petrović¹

> Faculty of Agriculture, University of Belgrade, Belgrade, Serbia Academy of Technical Vocational Studies, Belgrade, Serbia

*Corresponding author: draganap@agrif.bg.ac.rs

The pepper (Capsicum annuum L.) is a vegetable commonly used in the human diet. Due to its exceptional sensory and nutritional properties, it is readily consumed both fresh and processed into various ready meals, pickling, salads, dried spices, etc. There are a large number of cultivars of peppers that differ in shape, size, color, aroma, degree of hotness, etc. The pepper is a rich source of carotenoids, vitamins, mineral matter, carbohydrates, organic acids and aromatic components. Numerous bioactive compounds found in pepper, such as vitamin C (ascorbic acid), contribute to its high antioxidant activity.

The aim of this study was to determine the vitamin C content after different heat treatments commonly used in the industrial processing of peppers, as well as in the household. The domestic cultivar "Elephant ear" was subjected to tree different thermal treatments; 1) cooked in a closed and opened dish, 2) roasting in microwave oven and on the hob, and 3) frying in sunflower oil, for 15 minutes. The content of vitamin C was determined using the indirect iodimetry method. The results were expressed in mg/100 g dry basis (d.b.) and compared with the fresh pepper used as a control. The content of vitamin C in the fresh sample was 1295.38 mg/100 g d.b., while in the peppers cooked in closed and opened dish its value was 1007.58 and 615.17 mg/100 g d.b., respectively. In the pepper treated in the microwave oven and on the hob, the content of vitamin C was 494.51 and 1201.40 mg/100 g d.b., respectively, while its value in the fried sample was 443.65 mg/100 g d.b. The highest loss of vitamin C was observed after frying treatment (65.75%), while the lowest loss was recorded in the sample roasting on the hob (7.26%), in relation to the initial amount in unprocessed pepper. Also, the results of vitamin C content indicate that its loss was higher when the thermal treatment was performed in an opened than in the closed dish probably due to the increased presence of oxygen that may intensify oxidation. However, the obtained quantity of vitamin C per mg/100 dry basis of the tested samples is more than enough to ensure daily intake of vitamin C and avoid its deficiency in the human diet.

Key words: Vitamin C, Pepper, Cooking, Roasting, Frying.

Acknowledgements: This work was created as a result of research within the contract of the realisation and financing of scientific research work in 2021 between the Ministry of Education, Science and Technological Development of the Republic of Serbia and Faculty of Agriculture in Belgrade record number contract: 451-03-9/2021-14/200116.

Towards the SDG Challenges

25-26 November 2021, Novi Sad, Serbia

TRACK 2 - Participants 2

T2-P-5 Medicinal and aromatic herbs as functional ingredients for specialty beverages

Saša Despotović, Dragana Paunović, Jovana Marković, Viktor Nedović¹², Sofija Djordjević¹³, Sonja Veljović¹⁴, Aleksandra Martinović¹¹

KEYWORDS: medicinal herbs; aromatic herbs; ingredients; beverages.

INTRODUCTION:

The quest for foods that have a health-promoting impact began many years ago as a functional food. Nowadays, the varieties of food products and food ingredients are more about how they impact the health and well-being of consumers. Throughout history, herbs have been used to add taste and/or preservation to foods. The creative use of herbs can make food much more enjoyable, and not less healthy. Various herbal infusions can be added to beverage compositions to increase nutritional qualities and health benefits while maintaining a sensory and pleasant balance throughout the fortification process.

OBJECTIVES

The primary objective of the study was to develop and manufacture specialty drinks made from fruit juices and extracts of medicinal and aromatic plants that had a high concentration of biologically active chemicals and a high antioxidant activity. Three types of soft drinks have been developed: those with potentially targeted physiologically beneficial effects on metabolism, cardiovascular system, and body resistance, as well as those with medicinal and aromatic herbs whose positive healing effects have already been documented in previous research.

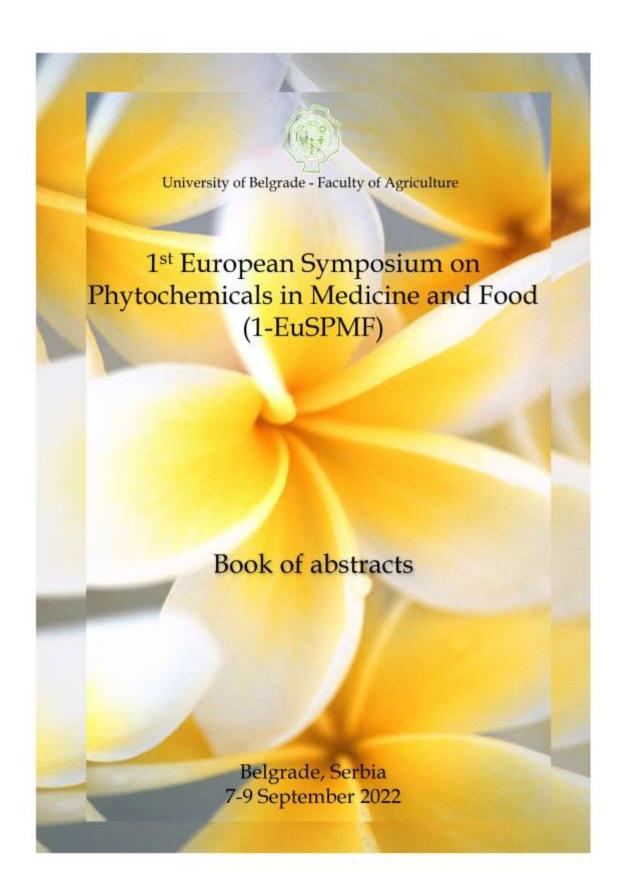
METHOD / DESIGN:

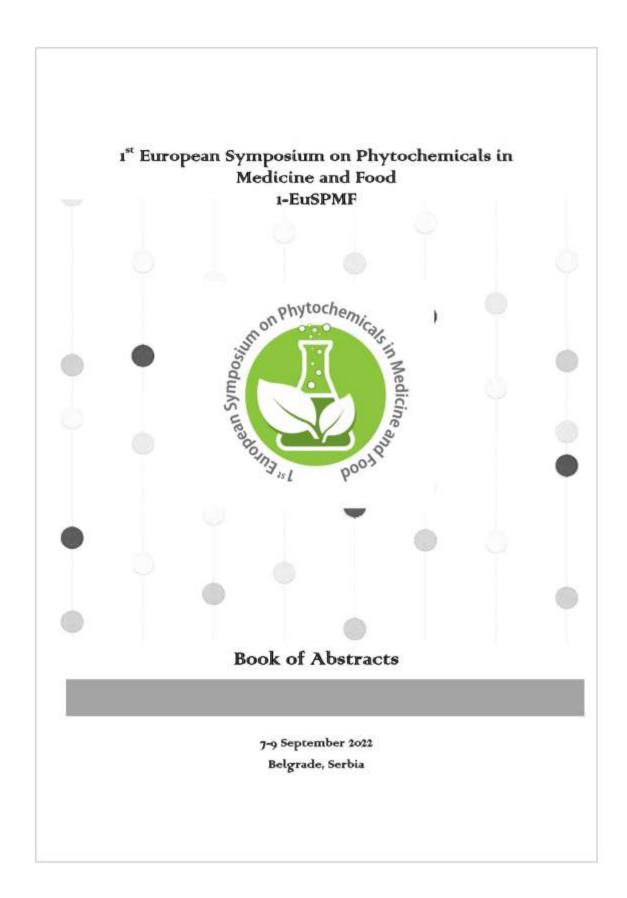
Fruit juices were made by mechanically processing mature fruits, that have not been fermented and have been preserved only via physical methods. The plant material was dried in ambient conditions and ground shortly before extraction. A single percolation method was used to create liquid plant extracts. Extracts of medicinal and aromatic herbs were mixed in combinations with specific functional characteristics sensory acceptable and compatible with fruit blends. Total flavonoid content, polyphenols, and antioxidant capacity were determined.

RESULTS:

Plant extracts and fruit juices were first classified in terms of total phenols, and their antioxidant activity was assessed using the FRAP and DPPH tests. The total antioxidant activity determined by the FRAP assay and the antioxidant activity determined by the DPPH test were correlated with the total phenol content. The number of phenolic compounds in tested herbal extracts and fruit juices differs significantly at the level of statistical significance of p 0.05. Given that antioxidant activity is directly proportional to phenolic component concentration, the FRAP and DPPH test both demonstrated statistically significant antioxidant activity.

[94]


The International Bioscience Conference and the 8th International PSU - UNS Bioscience Conference - IBSC2021


¹² Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia. Corresponding author: sdespot@agrif.bg.ac.rs

¹³ Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, Serbia

¹⁴ Institute of General and Physical Chemistry, University of Belgrade, Serbia

¹⁵ Faculty of Food Technology, University of Donja Gorica, Montenegro

University of Belgrade - Faculty of Agriculture Univerzitet u Beogradu - Poljoprivredni fakultet

Zbornik izvoda radova/Book of Abstracts 1st EUROPEAN SYMPOSIUM ON PHYTOCHEMICALS IN MEDICINE AND FOOD

Urednici/Editors

Dr Miloš B. Rajković, full professor Dr Jelena B. Popović-Đorđević, full professor Dr Aleksandar Ž. Kostić, associate professor

Izdavač/Publisher

University of Belgrade-Faculty of Agriculture Belgrade, Serbia

Za izdavača/For the publisher

dr Dušan Živković, full professor

Glavni i odgovorni urednik/Chief and responsible editor

dr Tamara Paunović, assistant professor

Tehnička priprema/Technical assistance

Slobodan Đorđević

Dizajn/Design

Daniela Popović-Beogračić

Stampa/Printed by

Maks printing, Beograd-Zemun

Tiraž/Printed in

80 copies

ISBN 978-86-7834-408-4

Odlukom Odbora za izdavačku delatnost Poljoprivrednog fakulteta Univerziteta u Beogradu od 02.09.2022. godine, br. 231/19, odobreno je izdavanje Zbornika izvoda radova sa Simpozijuma "1st European Symposium on Phytochemicals in Medicine and Food (1-EuSPMF)"

‡Zabranjeno preštampavanje i fotokopiranje. Sva prava zadržava izdavač Beograd-Zemun 2022. godina

VII_PP1_Effect of different heat treatments on antioxidative activity in pumpkin (Cucurbita maxima)

Jovana Marković¹, Dragana Mihajlović¹, Pavle Mašković², Nebojša Banjac¹, Jelena Mašković², Evica Ivanović¹

¹University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia; e-mail: jocau.markovic@gmail.com

Pumpkin (Cucurbita maxima)_contains significant amounts of diverse phytochemicals, including polyphenols (flavonoids, tannins) and carotenoids. Some of these compounds are known antioxidants, capable of neutralizing harmful biological free radicals, thus protecting health of living organisms. However, the numerous food-processing technologies decrease the amounts of naturally occurring antioxidants, due to enzymatic and nonenzymatic oxidation processes. The aim of this research was to determine the influence of different heat treatments (cooking, baking in conventional and microwave oven) on the antioxidant activity of phytochemicals present in the pumpkin.

The antioxidant activity was quantified spectrophotometrically, at the specific wavelengths, utilizing standard colorimetric reactions. The total antioxidant capacity of the analyzed samples was determined by phosphomolybdate method using ascorbic acid as a standard [1]. Antioxidant activity was measured by the inhibition of lipid peroxidation (FTC) [2] and free radical scavenging (DPPH^B [3], hydroxyl [4] and ABTS radical cation [5]) methods.

The highest total antioxidant capacity was found in a raw pumpkin sample $(5.58\pm0.33 \text{ mg AAE/g})$, while the lowest value was found in a sample of pumpkin baked in conventional oven $(2.88\pm0.32 \text{ mg AAE/g})$. Inhibition activity against lipid peroxidation (IC_{50}) was the highest in raw pumpkin $(16.72\pm0.73 \text{ µg/ml})$, and the lowest one was in conventional baked pumpkin $(8.49\pm0.31 \text{ µg/ml})$. Free radical scavenging activity measured by DPPH and hydroxyl radicals (IC_{50}) were the highest in raw sample $(35.67\pm1.99 \text{ µg/ml})$ and $(19.46\pm1.60 \text{ µg/ml})$, respectively, while the lowest values were in conventional baked pumpkin $(15.68\pm1.32 \text{ µg/ml})$ and $(9.69\pm2.01 \text{ µg/ml})$, respectively. Antioxidant activity measured by ABTS radical cation scavenging (IC_{50}) was the highest in raw sample $(41.63\pm0.61 \text{ µg/ml})$ and the lowest value was found in a sample baked in conventional oven $(21.32\pm0.45 \text{ µg/ml})$. The results showed that different heat treatments significantly affected on antioxidant activity, especially baking in conventional way, what makes it the least favorable process in this study.

References

- 1. Pricto, P. et al., Analytical Biochemistry, 1999, 269(2), 337-341.
- 2. Hsu, P.P. et al., Cell, 2008, 134(5), 703-707.
- 3. Takao, T. et al., Bioscience, Biotechnology, and Biochemistry, 1994, 58(10), 1780-1783.
- Hinneburg, I. et al., Food Chemistry, 2006, 97(1), 122-129.
- 5. Re, R. et al., Free Radical Biology and Medicine, 1999, 26(9-10), 1231-1237

Acknowledgement

This work was carried out within the agreements for scientific research work in 2022 between the University of Belgrade-Faculty of Agriculture and the Ministry of Education, Science, and Technological development of the Republic of Serbia (No. 451-03-68/2022-14/200116).

²University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia

UNIVERSITY OF BELGRADE - FACULTY OF AGRICULTURE The Institute for Agricultural Engineering

ORGANIZER

University of Belgrade, Faculty of Agriculture, The Institute for Agricultural Engineering, Belgrade, Serbia

CO-ORGANIZERS

University of Belgrade, Faculty of Mechanical Engineering, Department of Agricultural Engineering Belgrade, Serbia

University of Basilicata, School for Agricultural, Forestry, Food and Environmental Sciences, Potenza, Italy

University of Sarajevo, Faculty of Agricultural and Food Sciences, Sarajevo, Bosnia and Herzegovina

Aristotle University of Thessaloniki, Faculty of Agriculture, Thessaloniki, Greece

Vinca Institute for Nuclear Science, Belgrade, Serbia

The Research Institute for Agricultural Economics and Rural Development, Bucharest, Romania

Fakultet agrobiotehničkih znanosti Osijek, Osijek, Groalia

Institute of Agricultural Economics. Belgrade, Serbia

Symposium 6 Maria Engineer

ISAE 2023 - BOOK OF ABSTRACTS

The 6th International Symposium on Agricultural Engineering

BELGRADE, SERBIA

ISAE 2023 - Book of Abstracts

The $6^{\rm th}$ International Symposium on Agricultural Engineering - ISAE 2023 $19^{\rm th}$ - $21^{\rm st}$ October 2023, Belgrade, Serbia

Belgrade 2023.

ISAE 2023 - Book of Abstracts

The 6th International Symposium on Agricultural Engineering - ISAE 2023

Editors: Dr. Ivan Zlatanović Dr. Nedžad Rudonja

Publisher:

University of Belgrade - Faculty of Agriculture Nemanjina 6, Belgrade-Zemun, Serbia

> Publisher representative: Prof. Dr. Dušan Živković

Editor in chief: Doc. Dr. Tamara Paunović

Publishing office: Printing Service of the Faculty of Agriculture Nemanjina 6, Belgrade-Zemun, Serbia

> Edition: First

Number of copies printed: 100 copies

The publication and printing of "ISAE 2023 - Book of Abstracts" was approved for The 6th International Symposium on Agricultural Engineering by the decision no. 231/21 from 5.10.2023. year of the Committee for publishing activities of the Faculty of Agriculture, University of Belgrade.

ISBN: 978-86-7834-423-7

Reprinting and photocopying prohibited. All copy-rights reserved by the publisher.

Belgrade 2023.

THE POSSIBILITY OF USING HORSERADISH LEAVES POMACE IN THE FOOD INDUSTRY

Marković M. Jovana*, Nedović A. Viktor, Salević-Jelić S. Ana, Pejić D. Luzar, Mihajlović M. Dragana

University of Belgrade, Faculty of Agriculture, Belgrade-Zemun, Serbia

*Corresponding author: jovana.markovic@agrif.bg.ac.rs

Abstract: Horseradish is a plant that belongs to the Brassicaceae family and is native to southeastern Europe and western Asia. It is cultivated for its succulent and spicy root, which is used as a seasoning for meat, soups, seafood, etc. The horseradish root has a much higher culinary value than the horseradish leaf, which is usually discarded with the rest of the aboveground biomass and has no use in the food industry. However, the horseradish leaf can be used in the diet in the form of salad or in the preparation of various dishes, to which it gives a characteristic spicy flavor. The biological activity of horseradish is expressed as antimicrobial, insecticidal, anticoagulant, and gastro-protective effects of isothiocyanates, compounds formed by the hydrolysis of glucosinolates under the action of the enzyme myrosinase. In addition, the horseradish leaf is rich in vitamin C, polyphenols, and flavonoids, which is why it is desirable to press it to obtain juice that can be used in the food industry. Moreover, pressing leaves behind a pomace that could also potentially be used in the food industry. Therefore, this research aimed to analyze the content of phenolic compounds and the antioxidant potential of the horseradish leaves pomace, to achieve the full utilization of the plant and reduce biomass loss. Total phenolic content (TPC), total flavonoid content (TFC), total phenolic acid content (TPAC), and antioxidant activity (DPPH, ABTS, and FRAP methods) were determined by standard spectrophotometric methods. The results showed that the quantitative content of total phenolic compounds, flavonoids, and phenolic acids in horseradish leaves pomace, after pressing and obtaining juice, was 7825.50 ± 749.20 mg GAE/kg FW (fresh weight - FW), 9460.00 ± 138.60 mg CE/ kg FW and 8905.50 ± 336.90 mg CAE/kg FW, respectively. In the analysis of antioxidant activity, it was found that all three methods indicate the presence of antioxidant potential of horseradish leaves pomace, namely: 9.00 ± 0.70 mmol TE/kg FW (DPPH), 42.30 ± 3.80 mmol TE/kg FW (ABTS) and 17.30 ± 0.60 mmol TE/kg FW (FRAP). Based on the obtained results, it can be concluded that horseradish leaves pomace contains significant amounts of polyphenolic compounds and high antioxidant potential, making it a suitable raw material for the food industry, both from the point of view of waste prevention and potential enrichment of food products to which it is added (as a seasoning for salads and dehydrated soups, etc.).

Keywords: horseradish leaves pomace; polyphenols; phenolic acids; flavonoids; antioxidant activity.

International conference:

BIOCHEMICAL **ENGINEERING &** BIOTECHNOLOGY

For Young Scientists

International Conference

BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY FOR YOUNG SCIENTISTS

- Book of Abstracts -

Belgrade, 2023

Publisher:

UNIVERSITY OF BELGRADE, FACULTY OF TECHNOLOGY AND METALLURGY Karnegijeva 4, Belgrade www.tmf.bg.ac.rs

For publisher:

Dr Petar Uskoković, dean Faculty of Technology and Metallurgy, University of Belgrade

Editor-in-chief:

Dr Dušan Mijin, full professor Faculty of Technology and Metallurgy, University of Belgrade

Editors:

Dejan Bezbradica, full professor FTM Milica Simović, senior research associate FTM Marija Ćorović, senior research associate FTM Sonja Jakovetić Tanasković, assistant professor FTM Ana Milivojević, teaching assistant FTM

Cover design:

Katarina Banjanac, senior research associate ICFTM Milica Veljković, ICFTM

Print:

R&D Center of Printing Engineering, Faculty of Technology and Metallurgy, University of Belgrade

Circulation:

50

ISBN 978-86-7401-389-2

The project is funded by the European Union Framework Program for Research and Innovation Horizon Europe (contract no. 101060130)

All material appearing in this Book of Abstracts is protected by copyright under Copyright laws and is the property of the UNIVERSITY OF BELGRADE - FACULTY OF TECHNOLOGY AND METALLURGY or the party credited as an author of the content. You may not copy, reproduce, distribute, publish, display, perform, modify, create derivative works, transmit, or in any way exploit any such content, nor may you distribute any part of this content over any network, sell or offer it for sale without permission of the UNIVERSITY OF BELGRADE - FACULTY OF TECHNOLOGY AND METALLURGY.

ANTIOXIDANT POTENTIAL AND PHENOLICS CONTENT OF HORSERADISH ROOT JUICE ENCAPSULATED WITHIN DIFFERENT CARBOHYDRATE MATRICES

Jovana Marković^{1*}, Viktor Nedović¹, Ana Salević-Jelić¹, Steva Lević¹, Verica Đorđević², Spasoje Belošević¹, Dragana Mihajlović¹

¹ University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
² University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Horseradish is a plant grown for its succulent and spicy root, which presents a rich source of antioxidants such as phenolic compounds, vitamin C, and isothiocyanates. Due to its antioxidant properties, cold-pressed horseradish root juice could be an active ingredient in functional foods. However, fresh juices undergo enzymatic and microbiological changes, so it is necessary to preserve them. One of the approaches commonly used for this purpose is encapsulation by spray-drying, which involves the entrapping of bioactive components within carrier agents. This ensures the protection of the bioactive component from undesirable external factors and its controlled release. Many studies have shown that the use of a combination of maltodextrin and hydrocolloids as encapsulation carriers results in high-quality encapsulates. So, the aim of this study was the encapsulation of horseradish root juice and the characterization of the obtained encapsulates as potential antioxidants in food production.

Maltodextrin/guar gum (MD/GG) and maltodextrin/gum Arabic (MD/GA) were used as carriers to encapsulate horseradish root juice by spray-drying. Total phenolic, flavonoid, and phenolic acid contents (TPC, TFC, and TPAC, respectively) and antioxidant activity (DPPH, ABTS, and FRAP methods) were determined by standard spectrophotometric methods.

MD/GG and MD/GA with encapsulated horseradish root juice contained 1628 and 1568 mg gallic acid equivalents/100 g, respectively, of TPC; 264 and 253 mg catechin equivalents/100 g, respectively, of TFC; and 3272 and 3397 mg caffeic acid equivalents/100 g, respectively, of TPAC. Results for the antioxidant activity (expressed as mmol Trolox equivalents/100 g) of MD/GG and MD/GA were 0.8 and 0.7, respectively (DPPH); 6.9 and 7.6, respectively (ABTS); and 8.8 and 8.6, respectively (FRAP).

In conclusion, horseradish root juice encapsulated within carbohydrate biopolymers contained significant amounts of phenolic compounds and high antioxidant activity, which makes it a potential replacer for synthetic antioxidants in the food industry and opens the possibility for further research on this topic.

Key words: horseradish root juice; encapsulation; carbohydrate biopolymers; phenolics; antioxidant activity

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2023-01/200116).

^{*} Corresponding author, jovana.markovic@agrif.bg.ac.rs

PHYSICOCHEMICAL CHARACTERIZATION OF SPRAY-DRIED HORSERADISH ROOT JUICE ENCAPSULATED WITHIN MALTODEXTRIN/ALGINATE

Jovana Marković¹*, Dragana Mihajlović¹, Ana Salević-Jelić¹, Steva Lević¹, Verica Đorđević², Spasoje Belošević¹, Viktor Nedović¹

University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Spray-drying is one of the widely used techniques to extend the shelf-life and easier handling of vegetable juices. However, the high temperatures in the spray-drying chamber may cause the degradation of the bioactive components of the juices. Also, the enzyme activity and sugar content of fresh juices can lead to difficulties in drying and resulting in powders with unfavorable physicochemical properties. To overcome these problems, juices can be encapsulated within various biopolymers. Carbohydrates, maltodextrin, and alginate were used as carriers for the spray-drying encapsulation of bioactive components of various plant juices and extracts. To our knowledge, there are no reported studies on the encapsulation of horseradish root juice within these carriers. Therefore, this study aimed to investigate the influence of the maltodextrin/alginate carrier mixture on the physicochemical properties of the horseradish root juice preserved by the spray-drying encapsulation technique.

Root juice powder without a carrier (C, control sample) and maltodextrin/alginate encapsulates of root juice (MD/AL) were prepared by spray-drying. The powders were analyzed using standard analytical methods to determine the moisture content, water activity, hygroscopicity, oil holding capacity, bulk, and tapped density.

Moisture content, water activity, and hygroscopicity were lower in MD/AL (7.8%, 0.28, 22.9 g/100 g) than in C (10.2%, 0.32, 24.4 g/100 g). MD/AL had a higher oil holding capacity (1.4 g oil/g) compared to C (1.1 g oil/g). The values for bulk and tapped density were for MD/AL 0.5 and 0.7 g/cm³ and C 0.6 and 0.7 g/cm³, respectively.

Finally, the encapsulation of horseradish root juice in maltodextrin/alginate resulted in powders with significantly better physicochemical properties than spray-dried horseradish root juice without carrier. Based on this study, it can be concluded that the encapsulation process has great potential for the preservation of vegetable juices and provides many perspectives for further research and application in food products.

Keywords: spray-drying; encapsulation; maltodextrin/alginate; physicochemical characterization; horseradish root juice

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2023-01/200116).

.

^{*} Corresponding author, jovana.markovic@agrif.bg.ac.rs

BROCCOLI MICROGREENS-APPLE JUICE AS NOVEL BEVERAGES: TOTAL PHENOLIC, FLAVONOIDS AND ANTIOXIDANT ACTIVITY

Spasoje Belošević¹*, Danijel Milinčić¹, Ana Salević-Jelić¹, Jovana Marković¹, Steva Lević¹, Mirjana Pešić¹, Stefan Marjanović¹, Verica Đorđević² and Viktor Nedović¹

¹ University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
² University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Recently, microgreens have been recognized as a potential food of the future, and their application in the formulation of new products has been scarcely investigated. Only a few studies promote the use of microgreens and sprouts in the formulation of novel products, primarily beverages. The most often cultivated, analyzed and used microgreens are from the Brassicaceae family, because they present a good source of bioactive compounds, primarily glucosinolates, isothiocyanates and phenolic compounds. However, products from these microgreens species have a typical flavor, with herbaceous, grassy and sulphurous notes, often repulsive to consumers. Therefore, this study aims to examine total phenolic (TPC) and flavonoids (TFC) content, as well as antioxidant properties (ABTS** and FRAP) of novel sensorially acceptable broccoli microgreens-apple juice (BC-AJ). Previously produced coldpressed broccoli microgreens and apple juices were mixed in the ratios 51% and 49% respectively, and further analyzed by well-known spectrophotometric methods such as Folin-Ciocalteu's (TPC) and aluminum chloride (TFC) methods, as well as methods based on radical scavenging (ABTS**) and ion reducing (FRAP) activities for evaluation of antioxidant properties. Results for the TPC and TFC of BC-AJ were 109.78 ± 1.08 mg GAE/100 mL and 64.68 ± 2.25 mg QE/100 mL, respectively. Furthermore, novel BC-AJ had a good ability to scavenge ABTS++ radicals (162.90 ± 4.42 mg TE/100 mL) and a tendency to reduce [Fe3+-(TPTZ)₂]³⁺ complexes (258.50 ± 3.26 mg TE/100 mL), probably due to the most diverse of phenolic compounds originated from broccoli and apple. Finally, broccoli microgreens-apple juice has a high content of phenolic compounds and good antioxidant properties, so it can be considered as a potentially functional beverage, but future research that includes additional in vitro and in vivo studies is necessary.

Keywords: broccoli microgreens-apple juice; cold-pressing; total phenolic content; total flavonoid content; antioxidant activity

Acknowledgements: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2023-01/200116).

^{*} Corresponding author, shelosevic@agrif.bg.ac.rs

CHARACTERIZATION OF AMARANTH (AMARANTHUS TRICOLOR L.) MICROGREENS JUICE ENCAPSULATED WITHIN INULIN AND MALTODEXTRIN

Spasoje Belošević¹*, Danijel Milinčić¹, Ana Salević-Jelić¹, Jovana Marković¹, Steva Lević¹, Mirjana Pešić¹, Stefan Marjanović¹, Verica Đorđević² and Viktor Nedović¹

¹ University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
² University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Amaranth microgreens represent a rich source of betalains and phenolic compounds, which show a broad range of positive effects on human health. However, these biocompounds are very sensitive and easily degraded, which often limits their application and bioaccessibility. For the above reasons, natural extracts and juices are most often encapsulated using different carriers, which protect and control the release of bioactive compounds. The aim of this study was to encapsulate cold-pressed amaranth (Amaranthus tricolor L.) microgreens juice using maltodextrin (AMD) and inulin (AIN) as carriers and to investigate total phenolic content (TPC), total flavonoid content (TFC) and antioxidant properties (ABTS** and FRAP) of obtained spray-dried powders. To the best of our knowledge, this is the first report on the encapsulation of amaranth microgreens juice. Before analysis, both powders were reconstituted in Milli-Q water (5% solutions) and analyzed using well-known spectrophotometric methods. The results are expressed in mg equivalents (gallic acid, quercetin, Trolox) per 100 g encapsulates. The obtained values for TPC and TFC for AMD were 291.7 ± 3.0 mg GAE/100 g and 291.3 ± 2.5 mg QE/100 g, while values for AIN were 356.9 ± 1.0 mg GAE/100 g and 289.6 ± 3.8 mg QE/100 g. The results of antioxidant activity were as follows: 546.3 ± 12.6 mg TE/100 g (AMD) and 745.2 ± 3.1 mg TE/100 g (AIN) for ABTS** and 713.3 ± 8.4 mg TE/100 g (AMD) and 905.1 ± 4.5 mg TE/100 g (AIN) for FRAP. Finally, maltodextrin and inulin can be successfully used for the encapsulation of bioactive compounds of amaranth microgreens. In addition, both powders show good antioxidant properties and can be used in the food industry as potentially novel additives or supplements.

Keywords: amaranth microgreens juice; encapsulation; inulin; maltodextrin; antioxidant activity

Acknowledgements: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2023-01/200116).

69

50

^{*} Corresponding author, shelosevic@agrif.bg.ac.rs

University of Belgrade Faculty of Agriculture

The 3rd International UNIFood Conference

UNIFood2024 Conference

Book of Abstracts

Belgrade, June 28-29, 2024.

UNIFood2024 Conference - Book of Abstract

The 3rd International UNIFood Conference - UNIFood2024

Publisher

University of Belgrade - Faculty of Agriculture 6 Nemanjina street 11080 Zemun - Belgrade

For Publisher

Prof. Dr Dušan Živković, Dean University of Belgrade Faculty of Agriculture

Editors

Prof. Dr Mirjana Pešić

Prof. Dr Sladana Stanojević

Cover Design Layout, technical preparation, typesetting

Ivana Isaković

Print run

20 copies

Printing house

Faculty of Agriculture, Nemanjina 6, 11080 Belgrade

ISBN: 978-86-7834-438-1

Belgrade, 2024.

ENCAPSULATION OF BROCCOLI MICROGREEN JUICE: PHYTOCHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY

Belošević D. Spasoje¹, Milinčić D. Danijel¹, Salević-Jelić S. Ana¹, Marković M. Jovana¹, Lević M. Steva¹,

Pešić B. Mirjana¹, Marjanović M. Stefan¹, Dorđević B. Verica²,

Nedović A. Viktor¹

University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

*Corresponding author, vnedovic@agrif.bg.ac.rs

Encapsulation is a process that implies the active compounds are enclosed in a wall material using various techniques, creating a barrier that protects the active ingredients from unfavorable environmental conditions. The most commonly encapsulated active compounds derive from plant extracts and juices. Broccoli microgreen juice as a source of active compounds for encapsulation has not been used so far. The aim of this study is the encapsulation of broccoli microgreen juice (BCJ) in maltodextrin as wall material by spray drying technique and the characterization of the obtained powder in terms of phytochemical composition and antioxidant activity. The spectrophotometric assays were used to determine the content of total phenolics (TPC), flavonoids (TFC) and antioxidant activity (AA) (ABTS'+, DPPH' and FRAP). The TPC, TFC, and AA were expressed in mg equivalents (gallic acid, quercetin, and Trolox, respectively) per 100 g of the encapsulates. The values determined for TPC were higher than those for TFC. Regarding antioxidant activity, the results followed the order FRAP>ABTS '> DPPH'. It should be noted that the antioxidant potential expressed by the encapsulated BCJ varied due to different mechanisms of the employed antioxidant assays. In summary, broccoli microgreen juice encapsulated in maltodextrin showed a high content of phenolic compounds and good antioxidant activity and can be defined as a novel food ingredient. In addition, future studies should focus on the addition of encapsulated broccoli microgreen juice in food products and the characterization of such products.

Keywords: encapsulation; spray drying; microgreen juice; phytochemical composition; antioxidant activity

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2024-01/200116).

ENCAPSULATED HORSERADISH LEAF JUICE: A POTENTIAL ALTERNATIVE TO SYNTHETIC ANTIOXIDANTS IN MAYONNAISE PRODUCTION

<u>Jovana M. Marković</u>, Ana S. Salević-Jelić, Spasoje D. Belošević, Lazar D. Pejić, Biljana B. Rabrenović, Steva M. Lević, Viktor A. Nedović, Dragana M. Mihajlović

University of Belgrade, Faculty of Agriculture, Belgrade, Serbia

*Corresponding author: jovana.markovic@agrif.bg.ac.rs

Horseradish leaf is an under-researched source of phenolics with pronounced antioxidant potential. Due to the high biological activity of fresh horseradish juices, it is desirable to encapsulate them by spray-drying, a cost-effective one-step process suitable for scaling up production. The potentially harmful effects of synthetic antioxidants have led to an increasing demand for antioxidants from natural sources to maintain the oxidative stability of lipid-rich products. Therefore, this study aimed to compare the effect of encapsulated, spray-dried horseradish leaf juice within maltodextrin/alginate (MD/AL) and maltodextrin/gum Arabic (MD/GA) with the effect of a conventionally used synthetic antioxidant ethylenediaminetetraacetic acid (EDTA) on the mayonnaise oxidative stability, quality, and sensory properties.

Sunflower oil (75%), egg yolk (3%), vinegar (3%), sugar (3%), and salt (1%) were used for mayonnaise production. The water content (15%) was reduced by adding encapsulates (in an amount to achieve a total phenolic content of 400 mg gallic acid equivalents/kg mayonnaise). The mayonnaise containing EDTA was used as a positive control. Based on an accelerated oxidative stability test, MD/AL and MD/GA were found to be more effective than EDTA in delaying the mayonnaise oxidation, by prolonging the induction period (by 39 and 32%, respectively). The mayonnaise quality during the eight-week storage period was determined by measuring the pH and acid values. The horseradish encapsulates also improved the product quality with a higher pH (by 0.5-1.5%) and lower acidity (by 21.4%) after storage compared to the positive control. A nine-point hedonic scale was used for the sensory analysis of the mayonnaises. The overall acceptability of the mayonnaises followed the order: MD/AL>EDTA>MD/GA, with scores above 7 ("like moderately").

Finally, horseradish leaf juice encapsulates positively affected the oxidative stability, quality, and sensory properties of the mayonnaise, indicating the great potential of these natural antioxidants as a substitute for synthetic ones in the food industry.

Keywords: horseradish leaf juice, encapsulation, antioxidant activity, mayonnaise, oxidative stability

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-65/2024-03/200116).

THE INFLUENCE OF CARBOHYDRATE CARRIERS ON THE MORPHOLOGY AND PHYSICAL PROPERTIES OF RED BEET MICROGREEN JUICE ENCAPSULATES

Belošević D. Spasoje¹, Milinčić D. Danijel¹, Salević-Jelić S. Ana¹, Marković M. Jovana¹, Pavlović B. Vladimir¹, Lević M. Steva¹, Pešić B. Mirjana¹, Marjanović M. Stefan¹, Dorđević B. Verica ², Nedović A. Viktor¹⁵

University of Belgrade, Faculty of Agriculture, Belgrade, Serbia
University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

*Corresponding autho: vnedovic@agrif.bg.ac.rs

Red beet microgreen juice is considered a novel functional beverage due to its content of bioactive compounds, including the color pigment betalain and flavonoids. Considering the sensitivity of these bioactive compounds, it is necessary to protect them by encapsulation within carriers to extend their shelf life. The aim of this study was to apply the spray drying technique for the encapsulation of red beet microgreen juice in inulin (RIN) and maltodextrin (RMD) carriers and to determine the effects of spray drying on the morphology and physical properties of obtained encapsulates. The morphological properties of the obtained encapsulates were examined by scanning electron microscopy (SEM), while the moisture content, tapped and bulk density and color were determined by standard methods. The RMD was characterized by a small particle size with the presence of typical spherical particles and pseudo-spherical particles with irregular surfaces due to rapid evaporation at high temperatures in the spray drying chamber. In contrast to RMD, RIN had larger particles with a high degree of agglomeration as inulin is a larger molecule and more hygroscopic than maltodextrin. The moisture content of the encapsulates was below 10 %, with the higher bulk density of RIN compared to RMD. Regarding the color of the encapsulates, those in maltodextrin showed a higher brightness and saturation than the encapsulates within inulin. In summary, inulin and maltodextrin provide good morphological and physical properties and can be used for the encapsulation of red beet microgreen juice. However, further studies should include a detailed phytochemical characterization of the encapsulates.

Keywords: red beet microgreen juice, inulin, maltodextrin, scanning electron microscopy, moisture content

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-47/2024-01/200116).

HORSERADISH LEAF JUICE ENCAPSULATES: PHYSICOCHEMICAL, SPECTROPHOTOMETRIC, AND CHROMATOGRAPHIC CHARACTERIZATION

Jovana M. Marković¹, Ana S. Salević-Jelić¹, Danijel D. Milinčić¹, Spasoje D. Belošević¹, Uroš M. Gašić², Verica B. Dorđević¹, Mirjana B. Pešić¹, Steva M. Lević¹, Dragana M. Mihajlović¹, Viktor A. Nedović¹

University of Belgrade, Faculty of Agriculture, Belgrade, Serbia

²University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade, Serbia

3 University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

*Corresponding author: jovana.markovic@agrif.bg.ac.rs

Horseradish is mainly used in the food industry for its succulent and spicy roots, while the horseradish leaves are usually disposed of with the above-ground biomass. The cold pressing of horseradish leaves produces a juice that is rich in bioactive compounds with pronounced antioxidant potential. However, due to its high water content and biochemical reactivity, it is prone to degradation. The bioactive compounds of horseradish leaf could be protected from undesirable external factors by spray drying encapsulation within maltodextrin/alginate (MD/AL) and maltodextrin/gum Arabic (MD/GA) carriers. Therefore, the aim of this study was to encapsulate horseradish leaf juice within these carriers and to evaluate the physicochemical, spectrophotometric, and chromatographic properties of the obtained encapsulates. Using standard analytical methods, lower values for moisture content, water activity, solubility, oil holding capacity, and encapsulation yield were obtained for MD/AL than for MD/GA encapsulates. Standard spectrophotometric methods were used to characterize MD/AL and MD/GA encapsulates in terms of total phenolic content (5241.25 and 4849.00 mg gallic acid equivalents/100 g), total flavonoid content (4640.67 and 4159.99 mg catechin equivalents/100 g), total phenolic acid content (5008.34 and 7013.20 mg caffeic acid equivalents/100 g), and antioxidant activity (mmol Trolox equivalents/100 g: 0.88 and 0.44 (DPPH); 58.67 and 63.20 (ABTS); and 15.78 and 13.71 (FRAP), respectively). Using an ultra-high-performance liquid chromatography system, coupled with a quadrupole time-of-flight mass spectrometry, a total of fourteen phenolic compounds were quantified after extraction from the encapsulates. The chromatographic analysis also confirmed the higher total content of all identified phenolic compounds in MD/AL (1896.87 mg/kg) than in MD/GA (1761.27 mg/kg). The obtained results highlight encapsulated horseradish leaf juice as an underestimated and underexplored source of phenolic compounds with high antioxidant potential, whose application in the food industry could valorize crop side streams and reduce synthetic antioxidant usage.

Keywords: horseradish leaf, encapsulation, spray drying, phenolic compounds, antioxidant activity

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant numbers 451-03-65/2024-03/200116 and 451-03-66/2024-03/200007) and the Science Fund of the Republic of Serbia (grant number 7744714, FUNPRO).

CIP - Каталогизација у публикацији Библиотеке Матице српске, Нови Сад

663/664:658.562(048.3) 614.31(048.3)

INTERNATIONAL Congress "Food Technology, Quality and Safety" (5; 2024; Novi Sad)

e-Abstract book [Elektronski izvor] / 5th International Congress "Food Technology, Quality and Safety", 16-18 October 2024, Novi Sad; [main editor Ljubiša Šarić]. - Novi Sad: Institute of Food Technology, 2024

Način pristupa (URL): https://fins.uns.ac.rs/publications/? sft_publicationss=zbornik, - Opis zasnovan na stanju na dan 22.10.2024.

ISBN 978-86-7994-063-6

 а) Животне намирнице — Контрола квалитета — Апстракти б) Животне намирнице — Хигијена — Апстракти

COBISS.SR-ID 155106313

FREEZE-DRIED HORSERADISH LEAF POMACE AS A NOVEL VALUABLE SOURCE OF ANTIOXIDANTS

Jovana Marković¹*, Ana Salević-Jelić¹, Danijel Milinčić¹, Spasoje Belošević¹, Uroš Gašić², Verica Đorđević³, Mirjana Pešić¹, Steva Lević¹, Dragana Mihailović¹, Viktor Nedović¹

¹University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia
²University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
³University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

*Corresponding author: E-mail address: joyana markovic@agrif bg ac.rs

Cold-pressed horseradish leaf juice processing results in large quantities of pomace as a by-product, which is usually disposed of as waste. However, the pomace contains various antioxidant compounds that can be recovered and potentially used in the food industry. To reduce enzymatic and microbiological activity and achieve a more favorable form for addition to food, it is preferable to dry the fresh pomace. One of the most suitable drying techniques for the preservation of bioactive compounds is freeze-drying, which is performed under mild, non-thermal conditions. Therefore, this study aimed to obtain freeze-dried horseradish leaf pomace and to investigate the physicochemical properties of this by-product along with its potential as a source of phenolic compounds by spectrophotometric and chromatographic analysis. The freeze-drying process was performed under the following conditions: at a temperature of -40 °C and a pressure of 0.12 mbar for 48 h. In addition to the significantly reduced moisture content, low values for water activity and hygroscopicity were determined for the freeze-dried horseradish leaf pomace using standard analytical methods. Spectrophotometric methods were used to characterize the ethanolic (80% v/v) pomace extract, and high values were obtained for total phenolic, flavonoid, and phenolic acid contents as well as antioxidant activity (determined by DPPH, ABTS, and FRAP methods). Using an ultra-highperformance liquid chromatography system, coupled with a quadrupole time-of-flight mass spectrometry, a total of ten phenolic compounds were quantified after extraction from the freeze-dried powder. Phenolic compounds from the classes of flavonoids and phenolic acids were detected, with the kaempferol derivatives dominating quantitatively. The obtained results highlight freeze-dried horseradish leaf pomace as an underexplored source of antioxidant compounds whose addition to food products could reduce the amount of oxidation-caused waste.

Keywords: horseradish leaf pomace, freeze-drying, phenolic compounds, antioxidant activity, waste reduction

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant numbers 451-03-65/2024-03/200116 and 451-03-66/2024-03/200007) and the Science Fund of the Republic of Serbia (grant number 7744714, FUNPRO).

HORSERADISH LEAF BY-PRODUCT: A NATURAL ANTIOXIDANT IN MAYONNAISE PRODUCTION

Jovana Marković¹*, Ana Salević-Jelić¹, Spasoje Belošević¹, Lazar Pejič¹, Verica Đorđević², Biljana Rabrenović¹, Steva Lević¹, Viktor Nedović¹, Dragana Mihajlović¹

¹University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia
²University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

*Corresponding author:

E-mail address: jovana.markovic@agrif.bg.ac.rs

Due to the high biological activity of fresh horseradish leaves, it is desirable to press them to obtain juice that can be used in the food industry. In addition, a pomace rich in phenolic compounds with a pronounced antioxidant activity remains as a by-product of pressing. The potentially harmful effects of synthetic antioxidants have led to an increasing demand for antioxidants from natural sources to maintain the oxidative stability of lipid-rich products. Therefore, this study aimed to analyze the effect of adding freeze-dried horseradish leaf pomace on the mayonnaise's oxidative stability and quality during an eight-week storage period. The mayonnaises were produced using the following ingredients: sunflower oil (75%), egg yolk (3%), vinegar (3%), sugar (3%), and salt (1%). The water content (15%) was reduced by adding freeze-dried pomace (in an amount giving a total phenolic content of 400 mg gallic acid equivalents/kg mayonnaise). The control mayonnaise was prepared without adding horseradish pomace. The total oxidation value, calculated as the sum of the primary and secondary oxidation products, was higher in the control sample after eight weeks of storage than in the mayonnaise containing horseradish pomace. Based on an accelerated oxidative stability test, the horseradish pomace proved to be very effective in delaying mayonnaise oxidation by prolonging the induction period compared to the control sample. The horseradish pomace also improved the product quality with a higher pH value after storage compared to the control. In conclusion, freezedried horseradish leaf pomace positively affected the oxidative stability and quality of mayonnaise, indicating the great potential of this natural antioxidant as a substitute for synthetic ones in the food industry. Furthermore, this study promotes the circular economy by providing insights into the assessment valorization of horseradish leaf pomace regarded as agricultural biowaste.

Keywords: horseradish leaf pomace, freeze-drying, antioxidant activity, mayonnaise, oxidative stability

Acknowledgments: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-65/2024-03/200116).

MORPHOLOGY AND PHYSICAL PROPERTIES OF BROCCOLI MICROGREEN JUICE ENCAPSULATED WITHIN MALTODEXTRIN AND INULIN

Spasoje Belošević¹*, Danijel Milinčić¹, Ana Salević-Jelić¹, Steva Lević¹, Jovana Marković¹, Stefan Marjanović¹, Verica Đorđević², Mirjana Pešić¹, Vladimir Pavlović¹, Viktor Nedović¹*

¹Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia
²Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

*Corresponding author:

E-mail address: sbelosevic@agrif.bg.ac.rs; vnedovic@agrif.bg.ac.rs

Encapsulation is a process that is used in a variety of industries, including the food industry. There are many reasons for using encapsulation in the food industry, such as to protect an active compound from unfavorable environmental conditions, mask undesirable sensory properties, improve the stability of the encapsulated compound, facilitate handling, and improve physicochemical properties. Broccoli microgreen juice requires an encapsulation process because it contains various bioactive compounds, including phenolic compounds and sulfur compounds, which act as antioxidants. The aim of this study was to determine the morphology and physical properties of spray-dried, nonencapsulated broccoli microgreen juice (control powder) and encapsulated broccoli microgreen juice within maltodextrin (BMD) and inulin (BIN). The bulk and tapped density, moisture content, and color of the obtained powders were determined using the standard methods, while the morphological properties were determined using scanning electron microscopy (SEM). The control powder had a higher moisture content and a lower powder yield compared to the encapsulated powders. On the other hand, the obtained encapsulated powders had a higher bulk density than the control powder without any carrier, indicating better physical properties. In contrast to the BIN powder, the BMD powder exhibited higher values for brightness (L*). In terms of morphological properties, the control powder exhibited irregular particles in the form of agglomerates, indicating the stickiness of the powder. Unlike the control powder, all obtained encapsulated powders with carriers (BMD and BIN) had no agglomerates, resulting in lower stickiness. In addition, the BMD powder had spherical particles with a concave and rough surface, while the BIN powder had a smaller particle size with an irregular shape and wrinkled surface. In summary, the obtained encapsulated powders have good morphological and physical properties and can be further investigated for application in the food industry.

Keywords: encapsulation, broccoli microgreen juice, scanning electron microscopy, bulk density, tapped density

Acknowledgements: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-65/2024-03/200116).

PHYTOCHEMICAL COMPOSITION AND ANTIOXIDANT PROPERTIES OF ENCAPSULATED POWDERS OF RED BEET MICROGREEN JUICE WITHIN CARBOHYDRATE CARRIERS

Spasoje Belošević¹*, Danijet Milinčić¹, Ana Salević-Jelić¹, Steva Lević¹, Jovana Marković¹, Stefan Marjanović¹, Verica Đorđević², Mirjana Pešić¹, Viktor Nedović¹*

¹Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia
²Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

*Corresponding author:

E-mail address: sbelosevic@agrif.bg.ac.rs; vnedovic@agrif.bg.ac.rs

Red beet microgreen juice is a rich source of bioactive compounds with health-promoting properties that are important for human diets. It may be considered a healthy beverage due to its high antioxidant activity related to phenolic content. However, these compounds are sensitive and easily degradable, while red beet juice has an unpleasant, astringent, and earthy taste. The encapsulation process has recently been successfully used to protect bioactive compounds from harmful environmental influences and to mask the unpleasant taste of juices. This study aimed to encapsulate red beet microgreen juice within maltodextrin and inulin using spray-drying and to characterize the obtained encapsulates in terms of phenolic compounds and antioxidant properties. Total phenolic content (TPC) and antioxidant activity (AA) (ABTS** and FRAP) were determined by spectrophotometric methods, and phenolic compounds were assessed using an ultra-high performance liquid chromatography (UHPLC) system coupled with quadrupole time-of-flight mass spectrometry (Q-ToFMS). The TPC, AA, and phenolic compounds were expressed in mg equivalents of gallic acid, Trotox, gentisic acid, cournaric acid, and apigenin, respectively per 100 g of the encapsulates. Considering the results obtained, both encapsulates from red beet microgreen juice exhibited a high content of phenolic compounds, including various phenolic acid and apigenin derivatives, as well as good antioxidant activity. In our study, the encapsulates with inulin had a higher TPC than those with maltodextrin. There was a similar trend for antioxidant activity wherein the encapsulates with inulin showed stronger antioxidant activity determined by ABTS* assays than those with maltodextrin. Concerning the results of the UHPLC Q-ToF MS analysis, several phenolic acid derivatives such as hydroxybenzoic acid, hydroxybenzoic acid hexoside, and dihydroxybenzoic acid pentoside were detected in the encapsulates, while various apigenin Cglycoside derivatives predominated among the flavonoids. In summary, the obtained encapsulates can be used as potential functional additives.

Keywords: encapsulation, spray-drying, inulin, maltodextrin, antioxidant activity, phenolics

Acknowledgements: This work was supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (grant number 451-03-65/2024-03/200116).

SimTerm 2024 BOOK OF ABSTRACTS

Faculty of Mechanical Engineering Niš, Serbia, October 22-25

University of Niš, Faculty of Mechanical Engineering in Niš, Department of Thermal Engineering and Society of Thermal Engineers of Serbia

ISBN 978-86-6055-191-9

Publisher: Faculty of Mechanical Engineering in Niš

2024

AQUAPONIC SYSTEM IN THE CULTIVATION OF MICROGREENS AND SPROUTS: A REVIEW

Spasoje Belošević, Stefan Marjanović, Jovana Marković, Ana Todorović, Steva Lević, Ana Salević-Jelić, Marko Stanković, Zoran Marković and Viktor Nedović

Abstract: Aquaponics is a novel system for the simultaneous cultivation of plants and fish, developed in response to the uncontrolled use of chemical fertilizers in plant production and the waste generated by aquaculture. In this closed-loop system, ammonia-rich fish waste is converted into nutrients by nitrifying bacteria, serving as fertilizer for plants, while the plants help purify water for the fish by removing waste products and excess nutrients. Through waste reduction and maximized resource efficiency, aquaponics exemplifies the circular economy in agriculture and food production. Microgreens and sprouts are young seedlings that only need a few weeks to grow in different substrates and systems. They are appreciated for their appearance, flavor, and higher concentrations of bioactive compounds compared to mature plants. Their short growing time and low nutrient requirements make them ideal for cultivation in all modern agricultural practises, including aquaponics. This review focuses on the application of aquaponics for cultivating microgreens and sprouts. So far, only one study has investigated the cultivation of microgreens in aquaponics, compared to more extensive research on hydroponics and sprouts. Growing arugula microgreens in an aquaponics system with goldfish positively impacted microgreens' growth rates, while sprout production exhibited higher levels of vitamin C, protein, and soluble sugars, as well as improved germination rates, weight, and height. Lettuce and rocket were successfully grown using trout wastewater as a nutrient source, enhancing yield and quality while promoting water efficiency and fertilizer savings compared to conventional production. The main limitation of the aquaponics system for growing small plants such as microgreens, sprouts, and baby leaves is the potential microbial contamination from the recirculating nutrient water. Overall, the aquaponics system is an emerging technology for growing microgreens with reduced use of natural resources while positively influencing growth parameters and phytochemical content.

Keywords: Aquaponics, Circular economy, Microgreens, Plant and fish cultivation, Sprouts.

CA: Viktor A. Nedović, e-mail: vnedovic@agrif.bg.ac.rs

Page | 52

APPLICATION OF COLD PRESSING PROCESS TO DEVELOP POTENTIAL FUNCTIONAL AND SENSORY ACCEPTABLE RED BEET MICROGREENS-APPLE BEVERAGE: TOTAL PHENOLIC CONTENT AND ANTIOXIDANT PROPERTIES

Spasoje Belošević, Danijel Milinčić, Ana Salević-Jelić, Steva Lević, Jovana Marković, Stefan Marjanović, Verica Đorđević, Mirjana Pešić and Viktor Nedović

Abstract: Cold-pressed juices are consumed worldwide due to their beneficial effects on human health, which are related to phytochemical content. Wheatgrass sprout juice is the most popular cold-pressed juice consumed in its raw state and used to treat chronic diseases. Microgreens resemble sprouts and have a higher content of bioactive substances compared to mature plants. Recently studies have investigated the use of microgreens in some food technology processes such as cold-pressing. Moreover, cold-pressed red beet microgreens juice has a high content of phenolic compounds and betalains and good antioxidant properties. However, the specific taste of microgreen juices such as grassy, astringent and earthy taste is not generally accepted by consumers. Therefore, there is a need to obtain a sensorially acceptable healthy juice with a high content of health-promoting compounds. The aim of this study was to develop a coldpressed red beet microgreen-apple juice and to evaluate the total phenolic content and antioxidant activity. The red beet microgreen and apple were cut and pressed in a cold-press juicer and then mixed in a ratio of 51% to 49%, respectively. The total phenolic content (TPC) and antioxidant activity were determined using the Folin-Ciocalteu's reagent and the assay based on radical cation scavenging (ABTS++), respectively. The sensory test was evaluated with a 9-level hedonic scale. The developed red beet microgreenapple juice showed a high TPC and a good ability to scavenge ABTS++ radical cations. In terms of sensory evaluation by consumers, the newly developed juice showed good overall acceptance. In conclusion, red beet microgreensapple juice has a high content of health-promoting compounds and good antioxidant activity, so it can be considered as potential functional beverage, but future research is needed, including additional in vitro studies.

Keywords: Cold-pressing, Red beet microgreens-apple juice, Bioactive compounds content. Antioxidant activity.

CA: Viktor A. Nedović, e-mail: vnedovic@agrif.bg.ac.rs

Page | 69

УНИВЕРЗИТЕТ У БЕОГРАДУ UNIVERSITY OF BELGRADE

Пољопривредни факултет
Faculty of Agriculture
Институт за ратарство и повртарство
Institute for Crop and Vegetable Sciences

Х СИМПОЗИЈУМ са међународним учешћем

ИНОВАЦИЈЕ У РАТАРСКОЈ И ПОВРТАРСКОЈ ПРОИЗВОДЊИ - зборник извода -

10th SYMPOSIUM
with international participation
INNOVATIONS
in Crop and Vegetable Production

Београд, 21-22. октобар 2021.

УНИВЕРЗИТЕТ У БЕОГРАДУ UNIVERSITY OF BELGRADE

Пољопривредни факултет, Београд - Земун Faculty of Agriculture, Belgrade - Zemun

Х СИМПОЗИЈУМ са међународним учешћем

ИНОВАЦИЈЕ У РАТАРСКОЈ И ПОВРТАРСКОЈ ПРОИЗВОДЊИ

- Зборник извода -

10th SYMPOSIUM with international Participation

Innovations in Crop and Vegetable Production

- Book of abstracts -

Београд, 21 – 22. октобар 2021.

Belgrade, 21 - 22. October 2021.

СІР - Каталогизација у публикацији Народна библиотека Србије, Београд

633/635(048)(0.034.2)

СИМПОЗИЈУМ са међународним учешћем Иновације у ратарској и повртарској производњи (10; 2021; Београд)

Зборник извода [Електронски извор] = Book of abstracts / X симпозијум са међународним учешћем Иновације у ратарској и повртарској производњи, Београд, 21-22. октобар 2021. = 10th Symposium with International Participation Innovations in Crop and Vegetable Production, Belgrade, 21-22. October 2021. ; [уредници, editors Жељко Долијановић ... [и др.]]. - Изд. 1. - Београд : Универзитет, Пољопривредни факултет, 2021 (Београд : Photo Ray). - 1 електронски оптички диск (CD-ROM) ; 12 cm

Системски захтеви: Нису наведени. - Насл. са насловне стране документа. - Упоредо срп. текст и енгл. превод. - Тираж 50.

ISBN 978-86-7834-383-4

а) Пољопривреда -- Апстракти

COBISS.SR-ID 48427785

Промена нутритивних и сензорних својстава при преради поврћа

Драгана Пауновић^{*1}, Јована Марковић¹

¹Универзитет у Београду, Пољопривредни факултет, Немањина 6, 11080 Земун, Србија *e-mail: draganap@agrif.bg.ac.rs

Поврће представља богат извор витамина, минералних материја и дијетних влакана, а легуминозе садрже и значајне количине протеина високе биолошке вредности. Конзумирањем свежег поврћа обезбеђен је унос бројних биоактивних компоненти које имају позитиван ефекат на људско здравље. Међутим, већина поврћа се мора на неки начин прерадити, с циљем повећања искористивости и сварљивости, као и добијања потребних технолошких карактеристика. При топлотној обради долази до деградације термолабилних компоненти, што у основи значи да ће се при операцијама бланширања и кувања, услед екстракције, смањити садржај хидросолубилних витамина (Ц, Бкомплекс), а да ће се при операцијама пржења смањити садржај липосолубилних витамина (А. Д. Е. К). На стабилност витамина при преради, осим температуре, утичу и pH вредност, садржај минералних материја, присуство кисеоника и дејство UV зрачења. Каротенонди су група хемијских једињења која представљају бојене пигменте поврћа и воћа (мрква, парадајз, тиква, паприка и др). У ову групу спадају и једињења која имају провитаминску активност, од којих је најзначајнији В-каротен, провитамин витамина А. Утврђено је да се садржај укупних каротеноида у тикви, подвргнутој различитим начинима топлотне обраде, значајно смањио у односу на сирову (за 61,5 -68,5%), а да је при операцији кувања губитак износио 7 - 10% више у односу на топлотну обраду у конвенционалној и микроталасној пећници. Током топлотне обраде поврћа дешавају се одређене промене и на дијетним влакнима. Утврђено је да се кувано поврће лакше и брже вари у односу на сирово. При кувању купуса и мркве, лигнин и хемицелулоза остају непромењени, док се значајна промена дешава на целулози и пектину. Топлотном обрадом поврћа у влажној средини, долази до делимичне хидролизе молекула протопектина, настаје пектин, који повећава вискозитет раствора. Влакна, која су нерастворљива у води, делимично се разлажу, а последица ових промена је омекшавање плодова. Поред промене конзистенције, током прераде поврћа, одвијају се и бројне хемијске реакције ензимског и неензимског потамњивања, које доприносе промени боје, укуса и мириса производа. Према доступним литературним подацима, топлотна обрада не мора нужно да значи смањење нутријената у намирници, а самим тим и нутритивне вредности. Наиме, утврђено је да се топлотном обрадом парадајза повећава биолошка доступност ликопена, а да се након влажне топлотне обраде спанаћа повећава садржај калцијума;

Къучне речи: поврће, топлотна обрада, витамини, каротеноиди, дијетна влакна, потамњивање.

Changes of nutritional and sensory properties during vegetable processing

Dragana Paunović*1, Jovana Marković1

Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Zemun, Serbia *e-mail: draganap@agrif.bg.ac.rs

Vegetables are a rich source of vitamins, mineral matter and dietary fibers, and leguminoses in addition contain significant amount of high biological value proteins. Consumption of fresh vegetables ensures the intake of numerous bioactive compounds that have benefits for human health. However, most vegetables must be processed in some way, with the aim of increasing bioavailability and digestibility, as well as obtaining the necessary technological characteristics. Thermolabile compounds degrade during heat treatment, which basically means that the content of water-soluble vitamins (C, B-complex) will be reduced during blanching and cooking operations, due to extraction, and that the content of fat-soluble vitamins (A, D, E, K) will be reduced during frying process. Besides temperature, the stability of vitamins during processing is also affected by pH value, mineral matter content, the presence of oxygen and the effect of UV radiation. Carotenoids are a group of chemical compounds that represent colored pigments of vegetables and fruits (carrots, tomatoes, pumpkins, peppers, etc.). This group also includes compounds that have provitamin activity, among which the most important is 8-carotene, the provitamin of vitamin A. It was found that the content of total carotenoids in the pumpkin, subjected to various heat treatment methods, significantly decreased in relation to unprocessed one (by 61.5 - 68.5%). Also, during the cooking the loss of carotenoids was increased (7 - 10%) in relation to baking in a conventional and microwave oven. During the heat treatment of vegetables, certain changes also occur in dietary fibers. It has been determined that cooked vegetables are easier and faster to digest than raw ones. During cooking cabbage and carrots, lignin and hemicellulose remain unchanged, while a significant change occurs in cellulose and pectin. By cooking of vegetables, partial hydrolysis of protopectin molecules occurs, resulting in the pectin formation, which increases the viscosity of the solution. The fibers, which are insoluble in water, partially decompose, resulting in the fruits softening. In addition to the change in consistency, during the vegetable processing, numerous chemical reactions of enzymatic and non-enzymatic browning occur, which contribute to the change of color, flavor and aroma of the product. According to the available literature data, heat treatment does not necessarily mean a reduction of the nutrients in food, and thus the nutritional value decrease. Namely, it was found that applied heat treatment increases the bioavailability of lycopene in tomatoes, also increases the calcium content in spinach.

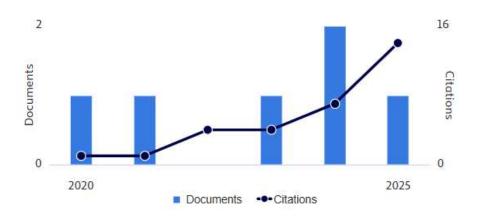
Keywords: vegetable, heat treatment, vitamins, carotenoids, dietary fibers, browning.

UNIVERZITET U BEOGRADU POLIOPRIVREDNI FAKULTET

Jovana M. Marković

UTICAJ INKAPSULIRANOG SOKA I LIOFILIZOVANOG TROPA KORENA I LISTA RENA (*Armoracia rusticana* L.) NA OKSIDATIVNU STABILNOST I KVALITET MAJONEZA TOKOM SKLADIŠTENJA

doktorska disertacija


Beograd, 2025.

Прилог 2. Цитираност радова

Marković, Jovana M.

Document & citation trends

Article Horseradish (Armoracia rusticana L.) leaf juice encapsulated within polysaccharides-blend-based carriers: Characterization and application as Citations potential antioxidants in mayonnaise production Markavić, J., Salević-Jelić, A., Milinčić, D., ... Mihajlović, D., Nedović, V. Food Chemistry, 2025, 464, 141777 Show abstract V Full text V Related documents Article Encapsulated horseradish (Armoracia rusticana L.) root juice: Physicochemical 4 characterization and the effects of its addition on the oxidative stability and Citations quality of mayonnaise Marković, I.M., Salević-Jelić, A.S., Milinčić, D.D., ... Nedović, V.A., Mihajlović, D.M. Journal of Food Engineering, 2024, 381, 112189 Show abstract ∨ Full text ∨ Related documents Article . Open access Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-9 Pressing on the Phytochemical Composition and the Antioxidant and Sensory Citations Properties Belošević, S.D., Milinčić, D.D., Gašić, U.M., ... Pešić, M.B., Nedović, V.A. Foods, 2024, 13(5), 757 Show abstract V Full text V Related documents Article • Open access Heat treatment effect on tocopherols, total phenolics and fatty acids in table 6 olives (Olea europaea I..) Citations Mihajlavić, D., Čalić, S., Marković, I., ... Premović, T., Rabrenović, B. Notulae Botanicae Horti Agrobotanici Clui Napoca, 2023, 51(1), 13029 Show abstract V Full text V Related documents Article . Open access The influence of cutting thickness, shape and moisture content on oil 1 absorption during potato frying | Uticaj debljine listova, oblika i sadržaja vlage Citations krompira na apsorpciju ulja tokom prženja Paunović, D.M., Marković, J.M., Stričević, L.P., ... Čirković, A.L., Rabrenović, B.B. Journal of Agricultural Sciences Belgrade, 2021, 66(1), pp. 67-74 Show abstract V Full text V Related documents Article . Open access

Quality parameters of sunflower oil and palm olein during multiple frying |
Parametri kvaliteta suncokretovog ulja i palminog oleina tokom višestrukog
prženja
Paunović, D.M., Demin, M.A., Petrović, T.S., ... Vujasinović, V.B., Rabrenović, B.B.

<u>Paunović, D.M., Demin, M.A., Petrović, T.S., ... Vujasinović, V.B., Rabrenović, B.B.</u>
<u>Journal of Agricultural Sciences Belgrade</u>, 2020, 65(1), pp. 61–68

Show abstract V Full text V Related documents

10

Citations

Прилог 3. Потврда о учешћу на пројектима

На основу члана 29. став 1. Закона о општем управном поступку ("Службени Гласник РС", бр 18/2016, 95/2018, 2/2023), Универзитет у Београду – ПОЉОПРИВРЕДНИ ФАКУЛТЕТ, издаје

ПОТВРДУ

Да је наставник/сарадник Јована Марковић, учесник на пројектима:

- "Развој и примена нових и традиционалних технологија у производњи конкурентних прехрамбених производа са додатом вредношћу за домаће и европско тржиште - СТВОРИМО БОГАТСТВО ИЗ БОГАТСТВА СРБИЈЕ", евиденциони број уговора за 2025. годину: 451-03-137/2025-03/200116;
- упоредна анализа висококвалитетних генетичких ресурса у Кини и Србији: Студија о ефикасности компонената лековитих биљака коришћењем савремених технологија", 2024-2027.

Шеф службе за финансијске

уноводенвене послове

Милена Досковић

Потврда се издаје на лични захтев, у сврху остваривања права везаних за поступак избора у звање, а на основу података у одговарајућој свиденцији Универзитета у Београду – Пољопривредног факултета,

Београд-Земун

Датум: 08.09.2025.